
NOTES ON ADJUNCTIONS, MONADS AND LAWVERE
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1. Adjunctions

1.1. Universal constructions and adjunctions.

Definition 1.1 (Adjunction). A pair of functors U : C → D and F : D → C form
an adjoint pair F a U or adjunction if for every c ∈ obC and d ∈ obD there is a
bijection

C(Fd, c) ∼= D(d, Uc)

natural in both arguments. The functor F is called the left adjoint of U , the functor
U is called the right adjoint of F .

Remark 1.2 (Adjunctions in terms of unit and counit). Recall that an adjunction
F a U is given equivalently by the following data: A pair of functors U,F like
above and natural transformations η : ID ⇒ UF , ε : FU ⇒ IC s.t. the following
so called triangle identities hold

F
Fη +3 FUF

εF

��
F

U
ηU +3 UFU

Uε
��
U

The natural transformation η is called the unit, the natural transformatin ε is called
the counit of the adjunction.

Adjunctions arise in the context of universal constructions, i.e. when there is a
functor U : C → D and for any object d ∈ obD a universal arrow d → Uc from d
to U in the sense of Mac Lane. (That is an initial object in the comma category
(d ↓ U).) Choosing a universal arrow for every d ∈ obD yields a functor F : D → C,
which is left adjoint to U . An analysis of the notion of adjoint functors reveals that
universal constructions always arise in pairs. (See [Mac98, theorem IV.1.2])

Remark 1.3. The name ’adjoint functors’ comes from the definition of adjunctions
in terms of hom-sets, where the hom-bifunctor

hom : Cop × C → Set

is compared with a scalar product

〈−,−〉 : V c × V → C
1
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on a vector space V over the complex numbers C. (Here V c denotes the vector
space V where the C-action is precomposed with complex conjugation.) Note that
this comparison is conceptually meaningful. A scalar product is a structure for
measuring correlations of two vectors. A hom-set (respectively its cardinality)
measures too how two objects are correlated in a category.

In linear algebra adjunctions are closely related to linear optimization problems (see
least-square problem and the relation between pseudo-inverses and adjoints). The
intuition is that what orthogonality and minimizers are in linear algebra, universal
arrows (i.e. universal properties) are in category theory. However, nobody was able
to make this analogy precise so far, afaik.

Remark 1.4. This kind of intuition about orthogonality is also used in (othogonal)
factorization systems, where we have a notion of when two (sets of) arrows are
”othogonal”. (Cf. e.g. [AHS04])

1.2. Adjunctions and limits. Recall that a category C admits limits of shape J
iff the diagonal functor ∆J : C → [J,C] admits a right adjoint. (And colimits of
shape J iff ∆J has a left adjoint.) So limits ’are’ adjoints. Conversely, adjoints can
be expressed in terms of limits (cf. [Mac98, theorem X.1.2]):

A functor U : C → D has a left adjoint iff

(i) U preserves all limits
(ii) for every d ∈ obD the limit of the canonical projection functor (d ↓ U)→ C

exits.

In this case the left adjoint is given on objects by

Fd = lim−→(d ↓ U)→ C

This formal characterization, however, doesn’t give a useful practical criterion for
the existence of left adjoints. The purpose of the various adjoint functor theorems
(there are more than two!) is to give more practical criteria by restricting

(i) to small (or other classes of) limits, and
(ii) conditions on C and D such that one can infer the existence of these limits.

The most famous ones are Freyd’s Adjoint Functor Theorem, which considers the
class of small limits in (i) and introduces solution set conditions and demands the
existence of small limits in C for (ii), and SAFT, which also considers the class
of small limits and replaces the assumption of a solution set condition with the
existence of a small coseparating set and well-powerdness.

1.3. Adjunctions, equivalences and dualities. Every equivalence of categories
can be made into an adjoint equivalence. In this case the functors are simultaneously
left and right adjoint to each other. Conversely, every adjunction restricts to an
equivalence of categories:

Theorem 1.5. Let F : C → D be a functor, G its right adjoint and η and ε the
unit and counit of this adjunction. Consider the full subcategory C0 of C generated
by all the c ∈ obC s.t. ηc is an isomorphism, and the full subcategory D0 generated
by all the d ∈ obD s.t. εd is an isomorphism. Then F restricts to an (adjoint)
equivalence of C0 and D0.
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Proof. The triangle identity yields

εFc ◦ Fηc = 1Fc.

if ηc is an iso, then Fηc is an iso, hence ηFc is an iso. This shows that F restricts
to a functor C0 → D0. Given a d ∈ obD0 then the other triangle identity reads

Gεd ◦ ηGd = 1Gd,

hence G restricts to a functor D0 → C0. The adjunction F a G restricts to an
adjunction between C0 and D0. By construction the unit is η restricted to C0 and
hence an iso. The same is true for the counit, so F and G restrict to an adjoint
equivalence as asserted. �

If the induced monad is idempotent, then C0 is a reflective subcategory (cf. example
sheet 3 ex 6). If the induced comonad is idempotent, then D0 is a coreflective
subcategory. (See also [MM92, lemma II.6.4])

In the contravariant case this shows that every adjunction restricts to a duality.
In fact many dualities in mathematics are restrictions of adjunctions. Two famous
examples are the dual vector space construction and the Galois correspondence in
field theory.

1.4. 2-Categorical perspective. If we want to study adjunctions algebraically,
we need the algebraic theory of 2-categories to be able to say what an adjoint pair
is in terms of equations (the triangle identities). Recall that a 2-category abstracts
from the structure we find in the category of (small) categories: we have objects
the small categories, arrows are functors, and then we find natural transformations,
which obey two composition laws. There is the vertical composition ’·’ and the hor-
izontal composition ’◦’. Both are interelated by the interchange law, and the units
of the vertical composition law are units for the horizontal. A way to remember
both is that the operation of composing functors is a bifunctor:

[D,E]× [C,D]→ [C,E], (F,G) 7→ F ◦G, (α, β) 7→ α ◦ β

The interchange law

(α · α′) ◦ (β · β′) = (α ◦ β) · (α′ ◦ β′)

is equivalent to saying that composition of functors preserves composition of arrows
in the product category of the two functor categories. The assertion about the units
is exactly that this bifunctor maps identity arows to identity arrows.

A 2-category has objects, 1-cells and 2-cells. The objects and 1-cells together form
a category. The 2-cells are defined algebraically following the observations made
about natural transformations: we have 2 composition laws, an interchange law
relating the two and the vertical identity 2-cells are also identity 1-cells for the
horizontal composition.

As with the category of small categories in a 2-category the hom-set of 1-cells
hom(c, d) actually carries a natural structure of a category. The arrows are 2-cells
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between the 1-cells c→ d and the composition law is the vertical composition of 2-
cells. Composition of 1-cells turns out to be a bifunctor again. In fact, a 2-category
can be defined equivalently as a category enriched in the cartesian closed category
of small categories.

In a 2-category we can define when two 1-cells form an adjoint pair by just restating
the definition of an adjoint pair in terms of unit, counit and the triangle identities.

An example of a 2-category besides Cat is the category HTop, which has as objects
topological spaces, 1-cells continuous maps and 2-cells homotopy classes of homo-
topies. An adjoint pair in HTop are two continuous maps f : X → Y , g : Y → X
and homotopy classes of homotopies η : 1X ⇒ gf , ε : fg ⇒ 1Y . Since all 2-cells are
invertible in HTop, this just says that f and g yield a homotopy equivalence of X
and Y .

These constructions can be iterated and lead to the notion of strict n-categories.
However, it turns out that strict n-categories are not the higher categorical struc-
tures which arise in mathematics naturally. Instead one can observe that the com-
position laws of n-cells, say, are only associative up to an invertible (n + 1)-cell.
A good example is HTop, We need to consider homotopy classes of homotopies as
2-cells for HTop to have a strictly associative composition law. If we would just con-
sider homotopies, the associativity would only hold up to a homotopy equivalence.
In fact, Top together with all the higher homotopies as the higher dimensional cells
is considered as the fundamental example of what is called an ∞-groupoid. An-
other related notion is that of (∞, 1)-category. Both are algebraic structures in the
focus of current research in abstract algebraic topology and homotopy theory, in
particular.

2. Monads

There are three major perspectives on monads. Comming from the poset case they
can be regarded as generalized closure operators. This perspective can be made
precise with the notion of idempotent monad (cf. example sheet 3, ex 1 and ex 6,
or proposition 4.2.3 and corollary 4.2.4 in [Bor94]).

Another perspective is that monads are the internal monoids in the strict monoidal
category (End(C), ◦, IC). This helps to remember the definition and is also of
importance in algebraic topology; namely, a monad yields a cosimplicial object (as
does any internal monoid in a monoidal category) which one can use to construct
cochain complexes and hence resolutions in the sense of (co)homological algebra.
(See [Mac98, section VII.6], and for the the treatment of cohomology induced by
monads Beck’s thesis [Bec67] TAC reprint no.2)

The most important and so far most far reaching perspective on a monad T on C is
that of an algebraic theory on the category C. Usually models of algebraic theories
are considered only in the category Set of small sets. Here the intuition can be
made precise in form of the following theorem:

Theorem 2.1. There is an equivalence between the (meta)category of monads on
Set and the (meta)category of infinitary algebraic theories. Furthermore, the cate-
gory of Eilenberg-Moore algebras of a monad is equivalent to the category of models
of its corresponding infinitary algebraic theory.

http://www.tac.mta.ca/tac/reprints/articles/2/tr2abs.html
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Here algebraic theories are considered in the sense of universal algebra, i.e., we have
one sort and operations of various arities on that sort satisfying certain equations
(see e.g. the notion of ”type of algebraic system” in [Mac98]p. 124). Operations of
arity zero are constants. An infinitary algebraic theory allows for (small) cardinal
numbers as arities. Examples of such theories are (bounded) complete sup-lattices.
If L is such a lattice and X a subset of L, then supX is considered an operation
of arity the cardinality of X. (In fact, we do consider infinitary algebraic theories
rather as infinitary Lawvere-theories than variety types of universal algebra in this
theorem.)

(Rough sketch of proof : For one direction one uses that the forgetful functor from
the category of Set-models of an infinitary algebraic theory has a left adjoint, and
hence induces a monad. Futhermore, with Beck’s monadicity theorem one can show
the forgetful functor to be monadic. For the other direction one uses the opposite of
the Kleisli category SetopT of the monad T as a syntactic category of an (infinitary)
algebraic theory. (In fact one needs a bit more, namely the structure of arities.)
One can show that T -algebras in Set correspond one-to-one to (small) product
preserving functors from SetopT . The induced monad of the infinitary algebraic
theory SetopT is isomorphic to T , and the the theory of the monad induced by an
infinitary algebraic theory is equivalent to the latter. For all this to make any
sense, we need to describe an algebraic theory by means of a syntactic category,
and understand which categories arise as syntactic categories of algebraic theories.
I will explain this in more detail for the finitary case in the section about Lawvere
theories, whose infinitary generalizations have been used here secretly.)

2.1. T -algebras. The most important notion related to a monad T is that of a
T -algebra and T -algebra homomorphism. To be able to understand why (and how)
monads are considered as algebraic theories, it is important to understand how
ordinary algebraic structures like monoids or groups (in Set), for example, can be
expressed as T -algebras first.

Recall that T = UF is the monad build from the forgetful functor U and the free
monoid (respectively free group) functor F . UFX is the set of finite tuples of
elements of X. The unit η of this monad is the ”insertion of generators x ∈ X”
as 1-tuples, the multiplication µ maps finite tuples of tuples to tuples by removing
the inner brackets. In the case of groups UFX is the set of tuples of elements of
X and its formal inverses, i.e., tuples of elements of a disjoint union X + X. The
multiplication µX does the same as for monoids with the additional requirement
that successive occurences of formal inverses of a k-tuple and the k-tuple itself in a
tuple are to be removed both.

How can we encode a monoid (M,m, e) as a T -algebra (M,h)? The idea is to
consider the set TM as the set of formal operations on the elements of M . In
the case of a monoid a finite tuple of elements of M stands for the operation
of taking the product of these elements. In the case of a group (G,m, e) this is
essentially the same. We have to deal with the formal inverses in addition, which
stand for inverting the respective element of G, before multiplying it. The T -algebra
multiplication h is then an actual realization of these formal operations on elements
of M as actual operations. For a monoid this means that we assign to a k-tuple of
elements of M its actual product; the same is true for groups.
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Associativity of these operations means in full generality in this context that if we
form tuples of tuples of elements of M , then removing the inner brackets and then
taking the product or taking the product of the inner tuples first and then the
product of the resulting tuple yields the same result. Convince yourselves that this
is exactly the commutativity of the associativity diagram of a T -algebra.

What about the unit e in M? The unit law of the T -algebra (M,h) says that the
1-tuples (x) for x ∈M have to be mapped to x by h. The formal unit in TM is the
empty tuple (). h has to map this formal unit to e. The unit and associativity law
of the T -algebra together imply that e is the unit. (Conversely, for any T -algebra
(M,h) the element e := h(()) is the unit of the monoid M .)

What about the inverses in the case of a group G? h has to map the formal inverses
of G to their actual inverses in G. µG together with the unit and associativity law
of the T -algebra (G, h) yield that multiplying g ∈ G with its inverse gives the unit
e.

To sum it up: If we think of the monad T as being the algebraic theory of groups,
say, then T constructs all the formal group operations, µ encodes how these op-
erations compose with each other, and η keeps track of the generating set. A
T -algebra structure (M,h) on M realizes these formal operations on elements of M
as particular operations in M , and makes M into a group.

But what singles out the particular operations of group multiplication, unit and
inversion in the monad T , and T -algebra (M,h)? The answer is: nothing. These
operations are just one of many possible particular choices of generating operations
for all the group operations. (Recall that it is possible to define a group structure
by just using one binary operation of ’division’. The binary multiplication, unit
and inversion together with their repsective properties can be derived from this
operation of ’division’.) A monad doesn’t single out any generating operations; it
describes all operations on equal footing. This comes of no surprise when bearing
in mind that a monad T corresponds to an algebraic theory A and T -algebras
represent any kind of algebra for this theory A.

We can learn the following from these examples:

(1) The algebraic structure of a monoid or group is completely described by
the fact how the operations compose. In other words: everything resides in
the monad (T, µ, η). We can see this by noting that we actually don’t need
to make references to particular sets X and its elements. We just need T , µ
and η. This comes of no surprise of course, because the axioms for monoids
and groups just say how the operations compose. A reference to elements is
convenient for our thinking to subtitute variables with something ”actual”,
but it is formally not necessary. (Recall that 0-ary operations are constants.
This gives the unit as an operation, and so doesn’t depend on elements
either.)

(2) We can develop the general perspective on T -algebras (A, h) for a monad
(T, µ, η) on a category C as TA being the object of formal operations on
(generalized) elements of A, and h being the concrete realization of these
operations in A. The unit axiom for (A, h) says that ηA is split monic,
hence it is meaningful to speak about the insertion of generators in general.
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(3) T constructs the object of formal operations, µ encodes how these formal
operations compose (i.e. it corresponds to the axioms of the algebraic
theory), η keeps track of the generators.

(For a discussion of monoids as T -algebras see also the introduction to [Bor94,
chapter 4])

Recall that generalizing the example of monoids and groups for any (finitary) alge-

braic theory A the category SetT of T -algebras is equivalent (actually isomorphic)
to the category algebras of A in a natural way (namely via the comparison func-
tor) by Beck’s theorem. We shall discuss Beck’s thereom later, but note that this
implies that with monads (on Set) we have a formal tool to deal with universal
algebra (of varieties) at hand. However, monads transcend the usual framework of
universal algebra (of varieties). A nice example illustrating this is the fact that the

category of compact Hausdorff spaces is equivalent to SetT for the monad T = UF ,
where U is the forgetful functor and FX the Stone-Čech compactification of a set
X considered as a discrete topological space.

2.2. Properties of CT . Realizing the importance of monads T and the category
CT of T -algebras we would like to understand what properties CT inherits from C
and properties of T .

(1) The forgetful functor UT : CT → C has a left adjoint FT : C → CT

and hence preserves all limits. In fact we have the stronger result that UT

creates limits. In particular, CT has all the J-limits that C has. This is
the abstract reason why we always construct limits (like e.g. products and
pullbacks) from the underlying limit in Set in algebra. UT is conservative,
i.e., it reflects isomorphisms. This is also a generalization of the familiar
fact in algebra that any homomorphism, whose underlying map is bijective,
is an isomorphism. (From this we can see, for example, that even though
the category of compact Hausdorff spaces is monadic over Set, the category
Top of topological spaces is not: it has continuous bijective maps, which
are not homeomorphisms, i.e., isomorphisms in Top.)

(2) As regards colimits, roughly, UT creates J-colimits that are preserved by
T . More precisely we have the following result: Let F : J → CT be a
diagram such that UF has a colimit in C, which is preserved by T and T 2;
then F has a colimit in CT which is preserved by U .

(sketch of proof : One proves that given a colimiting cocone λ : UTF ⇒
∆X, s.t. Tλ is a colimiting cocone in C and (T 2λj)j∈ob J is a jointly
epimorphic family of maps, then there is a unique T -algebra structure h :
TX → X on X s.t. λ has a lift to a colimiting cocone λ′ : F ⇒ ∆(X,h) in
CT )

One important class of colimits for T -algebras are coequalizers (of reflexive pairs).
Recall that every group G has a presentation, i.e., it is a quotient of a free group
F by the normal subgroup R generated by certain relations. Diagrammatically we
can write this as a coequalizer in Set

R
d0 //

d1

// F // G
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Here F is the free group generated by G and R is the equivalence relation and
subgroup of F × F generated by the equations which hold between products of
elements of G. We can replace R with the free group FR generated by R and get
a presentation of G in terms of a coequalizer of free groups

FR

d′0 //

d′1

// F // G

The presentation of groups in terms of free groups generalizes to arbitrary T -
algebras. In fact, using the approach of formal operations and their realizations, it
becomes a natural construction: Every T -algebra (X,h) has a canonical presenta-
tion in terms of a coequalizer diagram of free T -algebras in C

T 2X
µX //

Th
// TX

h // X (2.1)

In fact it is a split coequalizer. The splitting is given by the unit ηX and ηTX . Recall
that for a monad T the multiplication µ encodes the axioms of the corresponding
algebraic theory, i.e., how the formal operations compose. In a T -algebra (X,h) the
arrow h realizes these formal operations and hence encodes the equational relations
that hold in the particular X. The coequalizer (2.1) makes this intuition precise.

The canonical presentation of a group G is actually a coequalizer in the category
Grp of groups, not just in Set, if we consider the normal subgroup obtained as
the image of R under (g, h) 7→ gh−1. Again, every T -algebra (X,h) has such a
presentation in CT as a coequalizer

(T 2X,µTX)
µX //

Th
// (TX, µX)

h // (X,h) , (2.2)

which can be obtained from the previous coequalizer and what we’ve said about
colimits in CT earlier. The pair (Th, µX) is a reflexive pair, but the coequalizer
isn’t split in general. Its UT -image is a split coequalizer however; so it is a reflexive
UT -split pair.

The importance of coequalizers for the colimits in CT is underpinned by the fol-
lowing result due to Linton:

Theorem 2.2 (Linton). Let C be (finitely) cocomplete. TFAE

(i) CT has coequalizers for all reflexive pairs (i.e. we have a coequalizer for every
pair of parallel T -algebra maps which have a common section in CT )

(ii) CT is (finitely) cocomplete

Remark 2.3. The fact that we only need reflexive pairs is because we only need
”quotients by equivalence relations” of free algebras. Indeed, the free algebra func-
tor FT : C → CT preserves all colimits of C, and we know that every T -algebra is
a canonical quotient of free T -algebras. First we construct coproducts in CT . For
that we write down the canonical presentations of the T -algebras (Xi, hi); then we
use FT (X1 +X2) = FTX1 +FTX2 (recall FTX = (TX, µX) ) to obtain a reflexive
pair
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T 2(X1 +X2)
//
// T (X1 +X2)

for which we can form the coequalizer in CT . Now a diagram chase shows that this
coequalizer is indeed the desired coproduct in CT . Conceptually speaking we have
constructed the coproduct by joining together the defininging canonical relations
of (X1, h1) and (X2, h2) and dividing them out from the free algebra on the sum
of generators. (Recall that this is exactly how the coproduct of groups is usually
constructed in algebra. There it is called the ”free product”.) One can show that
any category that has (small) coproducts and equalizers of reflexive pairs, has all
equalizers and hence all (small) colimits. (Exercise :-) )

But when does CT have coequalizers for all reflexive pairs and a cocomplete C?
We approach this by trying to mimick the construction of coequalizers like in Set,
namely as quotients of equivalence relations. First let’s assume that C is finitely
complete and that the reflexive pair is an ’equivalence relation’, i.e., it is in addition
invariant under the symmetry X × Y → Y ×X and it is transitive (one expresses
this with help of pullback diagrams). C has an equalizer of the U -image of the
reflexive pair. If this coequalizer is moreover split, then we get from (2) that there
is a unique T -algebra structure on the coequalizer making it a coequalizer in CT .

To be able to apply this to any reflexive pair in CT , we need to form the symmetric
and transitive closure of the relation described by the U -image of the reflexive pair
in C. For this we need C to be a complete regular category. In such a category
one can then show (like in Set) that the coequalizer of the symmetric transitive
closure is also the coequalizer of the reflexive pair. To be able to construct a split
coequalizer we need that every such coequalizer has a section. This is the case if
every regular epi in C has a section. Summarizing:

Theorem 2.4 (cf. [Bor94, theorem 4.3.5]). Let C be a complete and cocomplete
regular category, then CT is also a complete, cocomplete and regular category.

In layman’s terms: If C allows for a nice interpretation of the theory of (equiva-
lence) relations and is cocomplete, then CT too allows for a nice interpretation of
(equivalence) relations and is cocomplete. (Or another way of seeing it: if C admits
pullback stable image-factorizations, so does CT .) One example of such a category
C is Set (assuming the axiom of choice, which in categorical terms is equivalent to
the statement that every epi in Set splits). We get the following very strong general
result:

Corollary 2.5. For any monad T on Set, SetT is complete and cocomplete.

Think for a minute what implications that has: not only is every category of models
of an any algebraic theory (in the sense of universal algebra of varieties) complete
and cocomplete, but also categories like the category of compact Hausdorff spaces,
etc. (Try to think how to prove that the category of compact Hausdorff spaces
is closed under small products and coproducts directly. The existence of small
products, for example, is known as (a version of) Tychonoff’s Theorem. It is easy
to proof using the theory of ultrafilters, but I don’t know of any easy proof besides
that.)
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Note that dealing with (equivalence) relations and their quotients in algebra com-
prises the majority of an introductory course in algebra. The only difference is that
in algebra we study representations of equivalence relations by substructures like
normal subgroups or ideals etc. In case of T -algebras we deal with the equivalence
relations and their quotients in terms of parallel pairs and coequalizers.

2.3. Universal splittings of monads. Every adjunction yields a monad. Con-
versely, the Eilenberg-Moore construction shows that every Monad T on C comes
from an adjunction F a U with

UT :CT → C (X,h) 7→ X, f 7→ f

FT :C → CT X 7→ (TX, µX), f 7→ Tf

The Eilenberg-Moore construction enjoys a universal property in the category of
splittings of T into adjoint pairs:

Theorem 2.6. Let F : C → A, and U : A → C be functors s.t. F a U and
T = UF ; then there is a unique functor K : A → CT with UTK = U , KF = FT .
Moreover we get Kε = εTK.

The ’smallest’ subcategory of CT we have to consider to be able to recover the
monad T from an adjoint pair is the full subcategory generated by the free T -
algebras (Tx, µx), x ∈ obC; that is, the essential image of FT . Free algebras
and morphisms between them, like e.g. the free monoid FX or the free group
FX, and morphisms FX → FY are uniquely determined by how they map the
generators x ∈ X. This is a direct consequence of the universal property of these
constructions. But this true for free T -algebras and morphisms between them in
general, and a consequence of FT a UT . (Recall the universal property of the unit
of an adjunction) Because of this we can attempt (and actually want) to describe
the category of free T -algebras syntactically just in terms of C. This gives one way
of looking at the Kleisli-construction:

• obCT = obC (We think of each x ∈ obC as the ’set’ of generators of the
free T -algebra (Tx, µx) )

• Morphisms fT : xT → yT in CT are the morphisms f : x → Ty (since
any such morphism uniquely determines a T -algebra morphism (Tx, µx)→
(Ty, µy) and vice versa. )

The composition law can be obtained from the universal property. If we use the
counit of FT a UT , we can express the underlying morphism of the composite
fT ◦ gT of two morphisms fT , gT in CT as µcod fT (f)g.

Keeping in mind that we’re actually describing free T -algebras gives us an adjunc-
tion FT a UT with T = UTFT . UT is the ’forgetful functor of free T -algebras’

UT : xT 7→ Tx, fT 7→ µcod fTf

FT : x 7→ xT , f 7→ (ηdom f ◦ f)T
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Moreover one can show (cf ES 3, ex 10) that the syntactically constructed Kleisli-
category is indeed equivalent (but, in general, not isomorphic) to the full subcate-
gory of free T -algebras.

The Kleisli construction enjoys a universal property in the category of splittings of
T into adjoint pairs dual to that of Eilenberg-Moore:

Theorem 2.7. Let F ′ : C → A, and U ′ : A → C be functors s.t. F ′ a U ′

and T = U ′F ′; then there is a unique functor L : CT → A with UT = U ′L and
F ′ = LFT .

2.4. Beck’s monadicity theorem. Suppose we have an adjuncion F a U with
U : A → C. We can ask the following question: When is the comparison functor
K : A → CT an equivalence; i.e. when is U monadic? This question is answered
by the various versions of Beck’s monadicity theorem. But what is monadicity
good for? If U is monadic, we get a representation of A as CT , and hence a
representation in terms of a formally constructed category using just data from C
(and endofunctors on C). So A can be seen as a category of structures defined
over C. (In particular we like to think about A as a category of models of an
algebraic theory T over C.) The main application of monadicity is to establish
certain properties of A and of U using what we know about CT and UT ; e.g., that
U creates limits, or that A has certain limits or colimits, etc.

Example 2.8. A prominent example is to use dualities and monadicity to prove
the existence of colimits from the existence of limits. In Set, for instance, we have
the (contravariant) powerset functor

P : Setop → Set, X 7→ P(X), f 7→ f−1

which has ’itself’ as a left adjoint

P : Set→ Setop, X 7→ P(X), f 7→ f−1

One can proof P monadic. Since it creates limits, Setop is complete, and hence Set
cocomplete. This kind of argument generalizes to the contravariant powerobject
functor on an (elementary) topos E, and proves that a topos E has finite colimits
from the existence of finite limits.

What is the key property of CT characterizing it as a category of T -algebras up
to equivalence? It is the canonical presentation of a T -algebra as the coequalizer
of free T -algebras in CT . To see this more clearly we shall sketch the proof of the
following version of Beck’s theorem.

Theorem 2.9 (Beck). Let U : A→ C be a functor with a left adjoint F and monad
T = UF . Let K : A→ CT be the unique comparison functor

(i) If A has coequalizers of reflexive U -split pairs, then K has a left adjoint L,
(ii) If in addition to (i), U preserves these coequalizers, then the unit of L a K is

an isomorphism
(iii) If in addition to (i) and (ii) U reflects isomorphisms, then the counit of L a K

is an isomorphism.
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Proof. (Sketch)

(i) We apply the technique of wishful thinking. Suppose K has a left adjoint
L, then L preserves coequalizers. Hence the canonical presentation of a T -
algebra is mapped to a coequalizer in A. If we write (2.2) in terms of the
adjunction FT a UT it becomes

FTUTFTUT (X,h)

FTUT εT(X,h) //

εT
FT UT (X,h)

// F
TUT (X,h)

εT(X,h) // (X,h)

Applying L to it and using T = UTFT = UF , LFT ∼= F (by composition
and uniqueness of adjoints) together with LεT = εL (see [Mac98, proposi-
tion IV.7.1], or prove it from L a K and εTK = Kε directly) we get

FUFX
Fh //

εFX

// FX // L(X,h) (2.3)

to be a coequalizer. Now the pair (Fh, εFX) is U -split, since we have
UL ∼= UT and it is the L-image of a UT -split pair. It is reflexive, as witnessed
by the common section FηX . A has coequalizers of reflexive U -split pairs by
assumption, so we can define L(X,h) as the coequalizer of (Fh, εFX). The
unit can be constructed as follows: Applying UTK to the coequalizer diagram
gives

UFUFX
UFh //

UεFX

// UFX // UL(X,h)

which can be rewritten to (recall UεFX = µX)

T 2X
Th //

µX

// TX // UL(X,h) (2.4)

But since (X,h) is a T -algebra by (2.1) h is a coequalizer of the parallel
pair (Th, µX) in C. This yields a unique arrow X → UL(X,h). Using that
(2.1) is a split coequalizer in C one can check that this arrow is a T -algebra
homomorphism (X,h)→ (UL(X,h), UεL(X,h)). We take this arrow to be the
(X,h)-component of the desired unit. The counit is obtained easily from the
defining coequalizer of LKA:

FUFUX
FUεA //

εFUA

// FUA // L(UA,UεA) (2.5)

By naturality of ε we have εAFUεA = εAεFUA, so εA coequalizes (FUεA, εFUA)
and there is a unique arrow LKA → A in A. We take this arrow to be the
A-component of the counit. One can check that both constructions give nat-
ural transformations ICT ⇒ KL, LK ⇒ IA and that they satisfy the triangle
identities.

(ii) If U preserves coequalizers of reflexive U -split pairs then U preserves the
defining coequalizer (2.3) of L(X,h). But the U -image of this coequalizer is
(2.4). So both TX → UL(X,h) and h : TX → X are coqualizers of the
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pair (Th, µX) in C and the unique arrow X → UL(X,h) is an isomorphism;
but this arrow is the underlying arrow of the (X,h)-component of the unit of
L a K. This shows the unit to be an isomorphism (UT reflects isomorphisms).

(iii) By assumption U preserves coequalizers of reflexive U -split pairs, so applying
U to the coequalizer (2.5) yields

T 2UA
TUεA //

µUA

// TUA // UL(UA,UεA)

a coequalizer in C. But (2.1) with (X,h) = (UA,UεA) is a split coequal-
izer, and hence preserved by any functor. Since both are coequalizers of
(TUεA, µUA) the U -image of the counit has to be an isomorphism. Now U is
assumed to reflect isomorphisms, so the counit is an isomorphism, too.

Remark 2.10. By considering coequalizers of reflexive U -split pairs, we have
considered the smallest class of colimits necessary to construct the left adjoint
L. It is obvious from the proof that it would be sufficient to demand only
the existence and preservation of coequalizers of U -split pairs only, or the
existence and preservation of reflexive pairs only.

The U -split pairs are needed to characterize monadic functors U ; namely, a
functor U is monadic iff it has a left adjoint and creates coequalizers of U -split
pairs by the ’precise’ version of Beck’s monadicity theorem.

Checking the conditions (i) and (ii) for U -split pairs is inconvenient in prac-
tice. It is usually much more convenient to check (i) and (ii) for reflexive pairs.
The existence and preservation of reflexive pairs is, however, only sufficient
but not necessary for U to be monadic.

�

2.5. 2-Categorical perspective: formal theory of monads. If we want to
understand and study monads algebraically then we need the structure of a 2-
category C. As it was the case for adjunctions we can just restate the definition of
a monad in Cat in an arbitrary 2-category C: A monad (t, µ, η) is a 1-cell t : c→ c
and two 2-cells µ : t2 ⇒ t, η : Ic ⇒ t, such that the respective associativity and
unit diagrams commute1.

How to define Eilenberg-Moore objects or Kleisliobjects of the monad t in C?
Firstly, what is a t-algebra? In Cat it is an element x of an object c of the 2-
category Cat equipped with an arrow tx → x of c satisfying the associativity and
left unit axiom. In a general 2-category we cannot speak about elements and arrows
of 0-cells, but we can use the idea of generalized elements. A t-algebra in Cat is,
for instance, a 1-cell x : 1→ c equipped with a 2-cell θ : tx⇒ x satisfying

t2x
tθ +3

µx

��

tx

θ

��
tx

θ
+3 x

x = Icx
ηx +3

1x
 (

tx

θ

��
x

(2.6)

1We shall denote by Ic the identity 1-cell on c, and by 1c the identity 2-cell on Ic.
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Here 1 denotes the terminal one-object category and by abuse of notation in (hori-
zontal) compositions of 1-cells with 2-cells the 1-cells are identified with their unit
2-cells; e.g. µx stands for µ1x. So ordinary t-algebras in Cat are t-algebra struc-
tures on a generalized element of c of type 1. But the definition of a t-algebra in
terms of these diagrams makes sense for any generalized element x : a → c of c of
type a. The terminal category 1 is a ”2-separating” 0-cell in Cat, that is, for any
two distinct 1-cells F : c→ d, G : c→ d in Cat we can find 1-cells x, y : 1→ c and
a 2-cell α : x ⇒ y such that Fα 6= Gα2. One doesn’t need to deal with t-algebra
structures on generalized elements of all types, since studying the one of type 1
already determines everything. In a general 2-category, where we might not have a
(2-)separating set of 0-cells3, we need to consider all the types.

We can restate everything in terms of hom-categories: For every 0-cell a [a, c] is a
category and (t∗ = [a, t], µ∗, η∗) is a monad on [a, c]. The t-algebras of type a are
precisely the t∗-algebras. (For the case C = Cat see ES 3, ex 7*.) Since [a, c] is
a category, we can construct the category of t∗-algebras [a, c]t∗ . This construction
can be extended to a 2-functor [−, c]t∗ : Cop → Cat, where Cop stands for the
2-category with the same 0-cells and 2-cells as C, but reversed 1-cells. We say
that t has an Eilenberg-Moore object ct if the 2-functor [−, c]t∗ is representable,
i.e., [−, c]t∗ ∼= [−, ct] in Cat. In the case of Cat the Eilenberg-Moore objects of t is
isomorphic to the category of t-algebras.

Kleisli objects for t can be defined by following the same line of idea by considering
Cop. Since Cop has the same 0-and 2-cells as C, (t, µ, η) is also a monad on Cop.
We can ask again about the representability of the 2-functor [c,−]t∗ : C → Cat. If
this is the case, we call the representing object ct the Kleisli object of t. In Cat
this coincides (up to isomorphy) with the Kleisli category of t.

Remark 2.11. Recall that we can define limits and colimits in a category C from lim-
its and colimits in Set by utilizing the Yoneda lemma. For example, c, d ∈ obC have
a product in C iff the functor C(−, c)×C(−, d) : Cop → Set is representable. This
approach generalizes to enriched categories utilizing the enriched Yoneda lemma,
and to 2-categories in particular, since 2-categories can be considered as categories
enriched in Cat. The approach to Eilenberg-Moore objects presented here is an
example of this: We have defined what an Eilenberg-Moore object is using repre-
sentability and that we know what the category of Eilenberg-Moore algebras is in
Cat.

How is this construction of the Eilenberg-Moore object ct of t related to a (universal)
splitting of the monad t into an adjunction? We obtain it from the isomorphism

ϕ : [−, ct] ∼= [−, c]t∗ .

The image of ϕct(Ict) is a t-algebra of type ct; that is, a 1-cell ut : ct → c, which
we consider the ”forgetful” 1-cell and a 2-cell α : tut ⇒ ut. For the ”free t-algebra”
1-cell f t : c → ct we consider the ϕc-preimage of the ”free” t-algebra (of type c),
i.e., (t, µ : t2 ⇒ t) in [c, c]t∗ . The naturality of ϕ yields

2This is equivalent to saying that the hom-functor [1,−] : Cat→ Cat is faithful. Note, however,

that 1 is not a separator in the category Cat of small categories and functors!
3Recall the discussion of generalized elements and separating sets in categories in the

supervisions.
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(t, µ) = ϕc[f
t, ct](Ict) = [f t, c]t∗ϕct(Ict) = (utf t, αf t).

This gives us t = utf t and αf t = µ. For the unit of the desired adjunction f t a ut
we take the unit η : Ic ⇒ utf t of the monad t. To get the counit we use the
naturality of ϕ once more:

ϕct(f
tut) = ϕct [u

t, ct](f t) = [ut, c]t∗ϕc(ft) = (tut, µut).

By the associativity law for α the 2-cell α : tut ⇒ ut lifts to a t-algebra homomor-
phism α : (tut, µut) → (ut, α). We define the counit ε : f tut ⇒ Ict to be ϕ−1

ct (α).
The triangle equalities are left to the reader as an exercise.

So whenever an Eilenberg-Moore object exists for a monad t in C, then the monad
comes from an adjunction in C. Note, however, that Eilenberg-Moore objects need
not exist for every monad in an arbitrary 2-category, in general.

Remark 2.12. (a) The definition of Eilenberg-Moore objects in terms of repre-
sentable 2-functors prompts one to ask about the relationship between the
Eilenberg-Moore construction, a 2-adjunction, and (weighted) limits. Indeed
if every monad in C has an Eilenberg-Moore object then the Eilenberg-Moore
construction is the object part of a 2-functor from the 2-category Mnd(C) of
monads in C to C. One can show that it is a 2-right adjoint to the inclu-
sion 2-functor C → Mnd(C), which maps every object c to the trivial monad
(Ic, 1c : I2

c = Ic ⇒ Ic) [Str72]. One can also obtain Eilenberg-Moore objects as
weighted limits [Str76].

(b) Another approach to the Eilenberg-Moore construction of a monad t would
have been to translate its univeral property from Cat in the 2-category C. One
can show that an Eilenberg-Moore object defined via representatbility has this
universal property [Str72]. However, I haven’t checked if an Eilenberg-Moore
object defined via the universal property is a representing object for [−, c]t∗ .

For more about the formal theory of monads see [Str72], [LS02] and the referenes
therein.

3. Lawvere theories

What is an algebraic theory? The answer to this question given by universal algebra
is the signature (consisting of sorts, operations, an arity function but no relations)
together with axioms in form of equations between terms build up from operations
and (typed) variables, which may either be considered to be free or universally
quantified over their respective sort. This answer is unsatisfactory, because, as
we have seen for groups for example, the signature and the defining equations are
just one particular presentation of an algebraic theory, and different equivalent
presentations of the same theory exist. Passing to the notion of algebraic theory
in terms of first-order logic is also of little help, because the notion of first-order
theory is a too general type of structure to deal with algebraic theories efficiently.

Why is this a problem? For two reasons. Firstly, in universal algebra we lack a good
notion of morphism between algebraic theories, and so cannot study what algebraic
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theories have in common or what makes them fundamentally different. Second, it
is conceptually unsatisfactory to not have a good notion of algebraic theory.

The signature problem can be circumvented by considering all operations of the
theory and all equations between them. With T -algebras of a monad we have also
learned of a structure to organise and reason about this data in a convenient way.
So is a monad the same as an algebraic theory? If one would be just interested
in Set-models of algebraic theories one could be tempted to answer affirmatively.
However, as I have explained in the supervisions on the example of groups, we can
give models of the group signature in any category with finite products; this is
what I called internal groups. For each category C with finite products where the
forgetful functor from internal groups Grp(C) → C is monadic we have a group
monad. This monad corresponds to the algebraic theory of groups in C; but what
about the algebraic theory of groups as such?

Consider, for example, the monad of groups internal to Set and the monad of
topological groups. Even though we can find and study morphisms between these
monads, we cannot say what the algebraic theory of groups is as such with the help
of monads (if we don’t want to consider the group monad on Set as the theory of
groups as such and hence Set as the undisputed base category).

This is a general feature of monads: A monad always merges the syntax and se-
mantics of the theory; we cannot say what the theory is without referring to a fixed
domain of interpretation C. Furthermore, if C does not admit countable coproducts
and coequalizers, then the free group functor is not likely to exist and the forgetful
functor is not monadic (example?); but we can still have a non-trivial category of
internal groups. Identifying monads with algebraic theories is therefore not fully
satisfactory.

What is needed for a good definition of an algebraic theory? There are two key
obsevations we can make from the preceding discussion:

(1) We need to consider all the operations of the theory and how they compose.
(2) We need to take the distinction between syntax and semantics seriously. The

algebraic theory itself should be defined in syntactical terms only, without any
explicit reference to its semantics (i.e. models).

The idea behind a Lawvere theory is to encode the data of all the operations of
an algebraic theory A (in the sense of universal algebra) and how they compose
in a category L[A]. We restrict to the most important case of one-sorted, finitary
algebraic theories, only.

Definition 3.1 (Lawvere theory). Let ℵ0 be a skeleton4 of the category of finite
sets that is closed under finite coproducts and s.t. the coproducts are strictly
associative. A Lawvere theory L is a small category L with finite products together
with a strictly product preserving functor I : ℵop0 → L that is a bijection on objects.
A map of Lawvere theories F : L→ L′ is a finite-product preserving functor which
renders commutative the diagram

4A skeleton of a category C is a full isomorphism-dense subcategory S which contains no
non-trivial isomorphisms; i.e., any two objects isomorphic in S are identical.
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L
F // L′

ℵop0
I

``

I′

>>

One can think of a Lawvere theory L as a category L with objects the natural
numbers, s.t. the object n is the n-fold product of 1 with itself. 1 represents the
sort. The arrows n = 1 × . . . × 1 → 1 are the projections, which correspond to
variables, and the n-ary operations. By the universal property of products the
arrows n → m are uniquely determined by the n-ary operations. We call such
arrows derived operations. The reason for the more ’complicated’ definition is that
it gives more flexibility to write down Lawvere theories explicitly and stresses the
importance of the aritities.

If we’re given an algebraic theory A (of varieties) in the sense of universal algebra
we can construct a Lawvere theory L[A] purely syntactically as described above:
objects are natural numbers and arrows n→ 1 are the projections together with all
the n-ary operations we obtain from all the compositions of the defining operations
given in the signature of A subject to the equations between those composites
as demanded by the axioms (and all the derivable equations). Conversely, Given
a Lawvere theory L we obtain an algebraic theory A[L] in the sense of universal
algebra with one sort, no relations and the n-ary operations being the arrows n→ 1
not the projections. The axioms are given by the equality of composites of the
derived operations. Because of the syntactic nature of the construction one refers
to L[A] as the syntactic category of A.

Using the flexibility build in in our definition we can give a more hands-on con-
struction of L[A], which is also important for applications and for dealing with
concrete Lawvere theories, in particular. Let FA : Set → Mod(A) denote the free
A-model/algebra functor. Define the category L[A] as the dual of the full subcat-
egory in Mod(A) generated by the FA-image of ℵ0. The functor I : ℵop0 → L[A]
is given by the restriction of F opA to ℵop0 . As FA preserves coproducts, F opA pre-
serves products, and the products in L[A] can be chosen in such a way that the
preservation is strict; it is a bijection on objects by construction.

Example 3.2 (Theory of equality). The simplest Lawvere theory we can think
of is Li := ℵop0 with I being the identity functor. The arrows are generated by
the product projections n → 1. ℵop0 is an algebraic theory with no (non-trivial)
operations, and hence the algebraic theory of equality. It is an initial Lawvere
theory in the category of Lawvere theories.

Example 3.3 (Theory of groups). To write down the Lawvere theory LG of groups,
we use the free functor construction outlined above. The objects of LG are the free
groups of n generators FG(n). Arrows FG(n) → FG(1) = Z in LG are the group
homomorphisms Z→ FG(n). The product in LG is the coproduct in Grp restricted
to the full subcategory LopG ; i.e. the ’free product’ of free groups.

Giving a group homomorphism Z → FG(n) is the same as to give an element of
FG(n) and vice versa. Recall from the section on T -algebras of a monad T that
elements of FG(n) can be regarded as formal group operations on n elements. If
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we consider the n generators as formal variables X1, . . . , Xn, then an element of
FG(X1, . . . , Xn) is a formal group operation in n-variables. But these are exactly
all the n-ary group operations. So arrows FG(n)→ FG(1) = Z are indeed the n-ary
group operations.

Example 3.4 (Theory of commutative rings). We use the free functor construc-
tion once more. The free commutative ring on n generators is the polynomial ring
Z[X1, . . . , Xn] =: Z[n]. These form the set of objects of the Lawvere theory of
commutative rings LR. The arrows Z[n] → Z[1] = Z[X] in LR are the ring homo-
morphisms Z[X] → Z[n]. Recall (or check) that the coproduct in the category of
commutative rings CRng is the tensor product ⊗Z. As it was the case for groups the
coproduct restricts to a coproduct in the full subcategory LopR , and hence becomes
a product in LR.

Giving a ring homomorphism Z[X]→ Z[n] is the same as to give an element of Z[n]
and vice versa. The elements Z[n] are the polynomials in n-variables, but these are
exactly the n-ary operations for commutative rings.

A set R admits a commutative ring structure iff it admits interpretations of all
the n-ary operations compatible with their composition laws; that is, R admits
a commutative ring structure iff for any polynomial p in n-variables we can find
maps fp : Rn → R s.t. whenever we substitute a family of n polynomials q1, . . . , qn
for the formal variables X1, . . . , Xn in p to obtain the polynomial p[q1, . . . qn] the
subsequent diagram commutes

Rm

fp[q1,...,qn] !!

(fq1 ,...,fqn )
// Rn

fp~~
R

(3.1)

If we use the familiar basic ring operations of the commutative ring R, then the
maps fp : Rn → R turn out to be the familiar polynomial functions on R induced
by the respective polynomial p by substitution. The slogan is that R is a ring iff
we can give meaning to polynomial functions on R.

If we replace any occurence of Z with an arbitrary but fixed commutative ring k
in the preceding construction we obtain the Lawvere theory LCAlgk

of comutative
k-algebras.

Example 3.5 (Theory of C∞-rings). LetM be a smooth (paracompact, Hausdorff)
manifold. What is the algebraic theory of rings of smooth functions5 C∞(M) :=
C∞(M,R)? We know that C∞(M) is a commutative R-algebra. However, being an
R-algebra contains no structure and hence no information particular to the property
of being ’smooth’.

How can we capture the property of being smooth in an algebraic theory? Apriori it
is not clear what kind of algebraic axioms should determine smoothness. However,
we can say something meaningful about what the n-ary operations should be. In the
example of commutative rings we’ve seen that the n-ary operations are polynomials
in n-variables over Z, and that R is a ring iff we can give meaning to these formal

5Here ’smooth’ means that the function M → R has all partial derivatives of any degree, i.e.,
is differentiable arbitrarily often.



NOTES ON ADJUNCTIONS, MONADS AND LAWVERE THEORIES 19

polynomials by actual polynomial functions on R. In the smooth case we consider
the smooth functions Rn → R as the formal n-ary operations and define the Lawvere
theory LC∞ as follows. Objects are R-vector spaces Rn for n ∈ N (with R0 being
the trivial R-vector space {0}) and morphisms Rm → Rn are the smooth functions.
The product is given by Rm × Rn = Rm+n. The arity functor I : ℵop0 → LC∞ is
the obvious one.

Since polynomial functions Rn → Rm are smooth we have a map of Lawvere theories
LCAlgR → LC∞ . This tells us that C∞-rings are in particular commutative R-
algebras. Generalizing the observation made for commutative rings we would like
to say that a C∞-ring A is a commutative R-algebra s.t. any smooth function
f : Rn → R has an interpretation as an n-ary operation An → A which compose in
the same way as the smooth functions do. To give meaning to this statement we
need to define what we consider to be a model of a Lawvere theory first.

Definition 3.6 (Model of a Lawvere theory). Let L be a Lawvere theory, and C
a category with finite products. A model or algebra of L in C is a finite-product
preserving functor M : L→ C. A homomorphisms between two models M and M ′

of L is a natural transformation M ⇒M ′.

Remark 3.7. The category ModL(C) of models of a Lawvere theory L in C is
the full subcategory of [L,C] of finite-product preserving functors. Given a map
of Lawvere theories F : L → L′ precomposition with F makes any model of L′

a model of L. Indeed, the functor F ∗ : [L′, C] → [L,C] restricts to a functor
F ∗ : ModL′(C)→ ModL(C).

Let’s unwind the definition of a C-model M of a Lawvere theory L. As a category
L is determined by the object I(1) (the abstract sort) and the morphisms I(n)→
I(1) for all n ∈ N (the n-ary operations) by the property that every object is a
finite product of I(1). M is a finite-product preserving functor, so M(I(n)) ∼=
M(I(1))× . . .×M(I(1)), and projections I(n)→ I(1) are mapped to projections in
C. Therefore, M is determined by M(I(1)), by the M -images of all the (non-trivial)
n-ary operationsM(I(n))→M(I(1)) and the requirement of being compatible with
the compositions.

Conversely, to give a model of L in C amounts to give an object X and for every
(non-trivial) n-ary operation p : I(n) → I(1) C-arrows fp : Xn → X s.t. for
any family of operations qi : I(ni) → I(1), 1 ≤ i ≤ n, the subsequent diagram
commutes

Xm

fp◦(q1,...,qn) !!

(fq1 ,...,fqn )
// Xn

fp}}
X

(3.2)

where m =
∑n
i=1 ki. For C = Set this means to give a set X and for each n a family

of n-ary operations which compose according to the formal rules as described by
L. We arrive at a generalization of the observation we made for commutative rings
as desired: A set X is an L-model iff we can give meaning to the formal operations
I(n)→ I(1) by actual operations Xn → X.
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Let M,M ′ : L→ C be two C-models of L. A natural transformation α : M ⇒M ′ is
uniquely determined by its component αI(1) : M(I(1))→M ′(I(1)). This is a conse-
quence of the universal property of products, M , M ′ preserving finite products, and
α commuting with the projections. Conversely, any arrow h : M(I(1))→M ′(I(1))
s.t. for every operation p : I(n)→ I(1) the following diagram commutes

M(I(n))
h×...×h//

M(p)

��

M ′(I(n))

M ′(p)

��
M(I(1))

h
// M ′(I(1))

(3.3)

determines uniquely a morphism αh : M ⇒ M ′ with αhI(1) = h. For C = Set a

morphism of Set-models of Lawvere theories is thus a map between the underlying
sets compatible with all the n-ary operations.

Example 3.8 (Objects). A model M of the Lawvere theory Li of equality in C is
just an object X. Indeed, ℵ0 is the free finite-coproduct completion of the terminal
category 1, so Li = ℵop0 is the free finite-product completion of 1. Any finite-product
preserving functor F : Li → C is determined by F (1) up to isomorphism, and any
object of C induces a finite-product preserving functor Fc : Li → C with Fc(1) = c.

Since there are no non-trivial operations in Li, morphisms of models M ⇒M ′ can
be identified with the arrows between the underlying objects M(I(1))→M ′(I(1)).
In fact, the evaluate-at-I(1) functor yields an equivalence of categories ModLi

(C) '
C. In terms of structures the algebraic theory of equality can hence be considered
as a theory of objects.

Example 3.9 (Groups). Any group G gives us a Set-model of MG of LG with
MG(Z) ∼= G: take for MG the hom-functor

hom(−, G) : Grpop → Set

and restrict it to the subcategory LG. As a hom-functor it is product preserving,
and since Z is the free group on 1 generator, we have hom(Z, G) ∼= G.

More generally any internal group (G,µ, u, S) in C induces a C-model of LG. This
follows from the fact that the binary operation of group multiplication X1X2 ∈
FG(X1, X2), the 0-ary operation of identity element e ∈ FG(∅) = {e}, and the unary
operation of inversion X−1 ∈ FG(X) = Z generate all the other n-ary operations
by composition for every n. To give a model of LG in C, instead of giving arrows
fp : Gn → G for all n-ary operations p ∈ FG(n) s.t. the respective diagrams in
(3.2) commute, it suffices to give arrows fX1X2 := µ : G2 → G, fe := u : 1→ G and
fX−1 := S : G→ G s.t. the following diagrams corresponding to the familiar group
axioms of associativity, left and right unit law, and existence of inverses commute



NOTES ON ADJUNCTIONS, MONADS AND LAWVERE THEORIES 21

G×G×G
1G×µ //

µ×1G

��

G×G

µ

��
G×G

µ
// G

G ∼= 1×G u×1G //

1G
%%

G

µ

��

1×G ∼= G
1G×uoo

1G
yy

G

G×G 1×S // G×G
µ

##
G

∆

;;

∆ ##

!G // 1 1
u // G

G×G
S×1
// G×G

µ

;;

i.e. that (G,µ, u, S) is an internal group in C. The commutativity of all the
diagrams in (3.2) can be inferred from these. (Exercise :-) ) Now consider any model
M : LG → C. Amongst all the operations we have in particular µ := M(X1X2),
u := M(e), S := M(X−1), and the commutativity of the diagrams in (3.2) yields the
commutativity of the defining diagrams of an internal group. So (M(I(1)), µ, u, S)
is an internal group object in C. Both constructions can be lifted to functors which
yield an equivalence of categories between the category of C-models of LG and the
category of internal groups in C.

ModLG
(C) ' Grp(C)

The concept of syntactic category LG satisfies the two imposed requirements of (1)
encoding all the operations of the theory of groups and (2) the separation of syntax
and semantics. Hence we identify the algebraic theory of groups as such with the
Lawvere theory LG.

Example 3.10 (Commutative rings). For commutative rings and LR we can make
the same observations as for groups and LG. Using the construction of LR via
finitely generated free commutative rings, that is, polynomial rings in finite vari-
ables, any commutative ring R yields via hom(−, R) : LR → Set a Set-model of LR.
More generally we obtain an equivalence of the category ModLR

(C) of C-models
of LR and the category CRng(C) of internal commutative rings in C. This equiv-
alence uses the characterization of LR-models and the fact that the commutative
diagrams corresponding to the standard axioms of a commutative ring imply the
commutativity of all the diagrams in (3.2). We can thus identify the theory of
commutative rings as such with the Lawvere theory LR.

Remark 3.11. One might raise the objection that the construction of the syntactic
categories L like LG and LR uses Set-models, and that we do not truly separate
between syntax and semantics. This is, however, just a convenient presentation;
the syntactic nature of L, namely encoding the operations and how they compose
remains untouched by the choice of presentation. We could have constructed the
syntactic categories also purely syntactically, as indicated above.
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Example 3.12 (C∞-rings). The motivation behind the theory of C∞-rings was to
formulate an algebraic theory of smoothness. In particular, we wanted to capture
the algebraic structure of C∞(M) the ring of smooth functions on a manifold M .
So is C∞(M) a C∞-ring? Unlike the case of groups and commutative rings we
don’t have explicit finite presentations of the theory at hand. Therefore we need
to give the concrete operations for any smooth function f ∈ C∞(Rn). First note
that for any open U ⊂ Rn the ring C∞(U) is a C∞-ring. We assign to any smooth
f : Rm → R the operation

f∗ : C∞(U)m → C∞(U), (g1, . . . , gn) 7→ f ◦ (g1, . . . , gn)

where f ◦ (g1, . . . , gn) : U → R denotes the function x 7→ f(g1(x), . . . , gn(x)). One
can check that this indeed makes all the respective diagrams in (3.2) commute.

A next important observation is that any quotient R/I of a C∞-ring R by an
ideal I ⊂ R (in the ring theoretic sense) yields a C∞-ring again. In particular any
C∞(Rn)/I is a C∞-ring. (This is a consequence of Hadamard’s Lemma for smooth
functions, [MR91, proposition 1.2])

Now we can turn to C∞(M) for a manifold M . The Whitney embedding theorem
allows us to consider M as a submanifold of some Rn and the ε-neighborhood
theorem says that M ⊂ Rn is a smooth retract of an open subset U ⊂ Rn, i.e.,
the inclusion i : M ↪→ U has a smooth left-inverse r : U → M . Since C∞(−,R) :
Mfdop → CRng is a functor, we get that C∞(M) is a retract, and in particular a
quotient of the C∞-ring C∞(U). This proves C∞(M) a C∞-ring. In fact, a more
detailed study of this argument reveals that C∞(M) is even a finitely presented
C∞-ring. (See [MR91] proposition 1.1., corollary 2.2 and theorem 2.3)

Remark 3.13 (Why considering C∞-rings? Algebraic Geometry of smooth mani-
folds and SDG). Why are we interested in such ’weird’ algebraic theories like that of
C∞-rings? Duals of categories of C∞-rings provide convenient categories in which
we can embed the category Mfd of smooth manifolds (which is a category lacking
a lot of nice properties and having ill-behaved limits). Let C∞ denote the category
of finitely generated C∞-rings, then the functor

C∞(−,R) : Mfd→ (C∞)op

is full and faithful. It is not an equivalence, however: First (C∞)op has all finite
limits, whereas Mfd doesn’t, and (C∞)op contains objects like the ring of dual
numbers R[ε] := R[X]/(X2), which is not the ring of smooth functions for any
smooth maifold M . R[X]/(X2) is a C∞-ring, since R[X]/(X2) ∼= C∞(R)/(X2) by
Hadamard’s Lemma. We can also give the operations explicitly: ∀f ∈ C∞(Rn)

qf : R[ε]n → R[ε], (ai + biε)1≤i≤n 7→ f(a1, . . . , an) +

n∑
i=1

∂if(a1, . . . , an)biε

The point of view one adopts for (C∞)op is that of formal smooth varieties. This
viewpoint comes from Algebraic Geometry, where one considers duals of categories
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of (finitely presented) k-algebras as formal varieties over k6 For instance, the formal
smooth variety D ∈ ob(C∞)op corresponding to the ring R[ε] (i.e. D = R[ε] as ob-
jects) even though not a manifold carries the geometric meaning of an infinitesimal
line segment; for C∞-maps C∞(M) → R[ε], i.e., maps D → M of formal smooth
varieties correspond one-to-one to tangent vectors of the manifold M .

(C∞)op is a convenient category to apply and use techniques of Algebraic Geometry
to study smooth manifolds. (For this one should probably restrict (C∞)op to the
full subcategory of formal smooth varieties of finitely presented C∞-rings.) For an
approach to the Algebraic Geometry over C∞-rings via schemes see [Joy10].

The most important use of C∞-rings so far is to construct so called well adapted
topos models of Synthetic Differential Geometry (SDG). SDG attempts to make
the notion of infinitesimals mathematically rigorous. In contrast to Non-Standard
Analysis, which has the same goal, SDG takes the approach from Algebraic Geom-
etry via nilpotents. This approach turns out to be very close to the intuition used
by differential geometers like Sophus Lie to reason about infinitesimals.

More precisely one postulates a Q-algebra R, of which one thinks of as the algebraic
model of the geometric (bipointed) affine line. The subset D := {d ∈ R | d2 = 0}
is the algebraic model of the (pointed) infinitesimal line segment. (One can think
of it as the intersection of the unit circle with the affine line tangent to it.) How can
we characterize that D is an infinitesimal line segment? Combining the intuition
that every infinitesimal curve should be a line segment together with the categorical
point of view that the object is determined by arrows from it leads to the following
answer: D is mapped by any map f : D → R in a linear affine way.

Axiom 3.14 (Kock-Lawvere). Let f : D → R be any map. Then
there are unique a, b ∈ R such that f(d) = a+ bd for all d ∈ D.

One consequence of this axiom is that every map f : R → R is differentiable
arbitrarily often in the following sense. To define f ′ : R → R at x0 ∈ R consider
the map D → R, d 7→ f(x0+d), i.e. how f behaves in the (first-oder) infinitesimal
neighbourhood of x0. The Kock-Lawvere axiom gives us a unique f ′(x0) ∈ R s.t.

f(x0 + d) = f(x0) + f ′(x0)d, ∀d ∈ D.

Within SDG one can develop a lot of results of Analysis in finite (and infinite di-
mensions) using the algebra of nilpotents very easily. Adding further Kock-Lawvere
type axioms for coordinate spaces of infinitesimal geometric objects like infinitesi-
mal squares, cubes, pencils of infinitesimal line segments with a common basepoint,
etc. enables one to develop a lot of differential geometry in SDG, and in particu-
lar on spaces, which are much more general than manifolds; e.g. function spaces
between manifolds, or the group of diffeomorphisms of a manifold.

So far we’ve been only talking about the theory; what about a model of the Kock-
Lawvere axiom? The first result one can obtain very easily is that there is no

6This is due to the fact that for algebraically closed fields k we have Hilbert’s Nullstellensatz,
which can be read geometrically as saying that up to ”infinitesimals” algebraic varieties can be

distinguished by their rings of polynomial ”coordinate” functions.



24 FILIP BÁR

(non-trivial) model of SDG in any Boolean topos; in particular, there is no non-
trivial model in Set. In other words, we don’t have any model except for the trivial
Q-algebra R = 0 in classical logic. This is due to the Law of Excluded Middle,
which allows us to construct a map f : D → R that takes the value 0 at 0 and
the value 1 everywhere else. The Kock-Lawvere axiom can only hold for such an
f iff 0 = 1 in R. In ’intuitionistic’ logic (more precisely Heyting logic) the Law of
Excluded Middle doesn’t hold, and the function f cannot be constructed.

Indeed, we can construct topos models for SDG using the category C∞. The sim-
plest one is the topos of presheaves on (C∞)op: [C∞,Set]. Composing the Yoneda-
embedding y with the fully faithful embedding of C∞(−,R) : Mfd→ (C∞)op gives
us a fully faithful embedding

ι : Mfd ↪→ [C∞,Set],

which preserves the ”good” limits in Mfd, namely, pullbacks of smooth maps that
are transversal, and the terminal object (M&R theorem 2.8). The real line R is
mapped to the representable functor R = homC∞(C∞(R),−), which is just the
forgetful functor C∞ → Set by the universal property of the free C∞-ring on one
generator C∞(R). Unpacking the definition of D in the internal logic of the topos
amounts to form the obvious equalizer, which is computed pointwise; so D(A) =
{a ∈ A | a2 = 0}, for any finitely generated C∞-ring A. Due the universal property
of R[ε] this functor is seen to be representable as well: D ∼= homC∞(R[ε],−).

To show the Kock-Lawvere axiom being satisfied in [C∞,Set] we can use sheaf
semantics (see [MM92, section 4.7], and for this particular case [MR91, section II.2]
for details). In arrow-theoretic form the Kock-Lawvere axiom holds in [C∞,Set] iff
for all finitely presented C∞-rings A and all arrows f : homC∞(A,−)→ RD there
are arrows a, b : homC∞(A,−)→ R s.t. the subsequent diagram commutes

R×R×D
(+)×1D // R×D �

� // R×R
(·)

""
homC∞(A,−)×D

(a,b)×1D

66

f×1D
++

R

RD ×D
ev

55

(3.4)

and any other pair of arrows a′, b′ : homC∞(A,−) → R satisfying that for any
C∞-ring B and homomorphism h : A→ B



NOTES ON ADJUNCTIONS, MONADS AND LAWVERE THEORIES 25

R×R×D
(+)×1D // R×D �

� // R×R
(·)

""
homC∞(B,−)×D

(h∗◦a′,h∗◦b′)×1D

66

(f◦h∗)×1D
++

R

RD ×D
ev

55

(3.5)

commutes, then a′ = a and b′ = b. The first diagram is the interpretation of the
existential statement and the second of the uniqueness assertion.

Since R and D are both representables, we can use Yoneda to translate the commu-
tativity of the diagrams in statements about C∞-rings. The natural transformation
f corresponds to an f ∈ RD(A) = Nat(homC∞(A,−)×D,R); but applying Yoneda
and representability of R and D once more we can compute Nat(homC∞(A,−) ×
D,R) to be the ring homC∞(C∞(R), A[ε]) ∼= A[ε]. A is finitely generated, so
A ∼= C∞(Rn)/I and A[ε] = (C∞(Rn)/I)[X]/(X2) ∼= C∞(Rn × R)/(I, t2), where t
stands for the projection Rn × R → R to the last component. Hence f ∈ RD(A)
can be identified with a class of smooth functions f : Rn × R→ R, (x, t) 7→ f(x, t)
modulo I in the first variable and modulo t2 in the second. The natural transforma-
tions a, b correspond to elements of A, i.e., to classes of smooth functions Rn → R
modulo I. Elements d ∈ D(A) are classes of smooth functions Rn → R modulo I
whose square is I.

Since the hom-functor maps coproducts to products in the first argument the
functor homC∞(A,−) ×D is representable with representing object A ⊗∞ R[ε] ∼=
A[ε]. The natural isomorphism homC∞(A,−) × D ∼= homC∞(A[ε],−) at stage
B ∈ (C∞)op sends a C∞-homomorphisms h : A[ε] → B to (h ◦ iA, h(ε)), where
iA : A ↪→ A[ε] is the canonical inclusion a 7→ a + 0ε. For B = A[ε] the natural
transformation (a, b)×1D corresponds under the Yoneda-isomorphism to the triple
(a + 0ε, b + 0ε, ε) ∈ A[ε] × A[ε] × D(A[ε]), and ε is the class of smooth functions
t mod t2. Similarly, the natural transformation f × 1D corresponds to the pair
(f + 0ε, ε).

The ring structure of R is given pointwise; that is, the ring structure of R(A[ε]) =
A[ε] is that of A[ε], so the composite of the upper path of the diagram (3.4) trans-
lates to the class of smooth functions

(x, t) 7→ a(x) + b(x) · t mod (I, t2)

For the lower path evaluation evA[ε](f+0ε, ε) ∈ R(A[ε]) = A[ε] is the class (x, t) 7→
f(x, t) mod (I, t2), i.e. f . The commutativity of the diagram (3.4) is equivalent
to saying that for each f ∈ RD(A) we can find a, b ∈ A s.t.

f(x, t) = a(x) + b(x) · t mod (I, t2) (3.6)

For the uniqueness assertion note that the commutativity of the diagram (3.5) just
states that (3.6) is stable under C∞-homomorphisms h : A → B. Indeed, by
the naturality of Yoneda the natural transformation f ◦ h∗ corresponds to h[ε](f)
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with f understood as the element in RD(A) = A[ε] and h[ε] being the induced
C∞-homomorphism A[ε]→ B[ε] by h (by functoriality of the construction of dual
numbers). Similarly, a ◦ h∗ and b ◦ h∗ correspond to h(a) and h(b), respectively.
Stability of (3.6) under h just means7

h[ε](f)(x, t) = h(a)(x) + h(b)(x) · t mod (I, t2)

But (3.6) just uses the ring structure and is stable under any ring homomorphism.
From the viewpoint of C∞-rings the uniqueness assertion in (3.5) just says that the
classes a and b in (3.6) are unique with this property.

Let f ∈ RD(A) be given and fix an arbitrary representant, also denoted by f . By
Hadamard’s Lemma there is a smooth function g : Rn × R→ R s.t.

f(x, t) = f(x, 0) + ∂tf(x, 0) · t+ g(x, t)t2.

With a := f(−, 0) mod I, b := ∂tf(x, 0) mod I (3.6) is satisfied. As for the
uniqueness for any a and b satisfying (3.6) there are smooth u, v ∈ I and w ∈ (I, t2)
s.t.

f(x, t) = a(x) + u(x) + (b(x) + v(x))t+ w(x, t)t2.

Taylor expansion in t at t = 0 parametrized by x ∈ Rn yields a(x) + u(x) = f(x, 0)
and b(x) + v(x) = ∂tf(x, 0). This shows the uniqueness.

So the Kock-Lawvere axiom does hold for R in [C∞,Set]. In fact, much stronger
axioms are satisfied in this topos. Besides various Kock-Lawvere type axioms for
”all” infinitesimal objects (properly defined using the structure of Weil algebras)
another property of [C∞,Set] is the satisfaction of the Integration Axiom, which
states that any function f : R→ R has a primitive:

Axiom 3.15 (Integration). Let f : R → R be any map. There is a
unique g : R→ R s.t. g′ = f and g(0) = 0.

For more on SDG see [Koc09], [Lav96], [Bel09]; for the construction of topos models
using C∞-rings, see [MR91].

3.1. Free Set-models of a Lawvere theory. The construction of the syntactic
category of a Lawvere theory of an algebraic theory (in the sense of universal
algebra) in terms of finitely generated free Set-models is another instance of the
Yoneda Lemma. Let L be a Lawvere theory. Consider ModL(Set) ↪→ [L,Set]. For
the latter we have the Yoneda embedding

y : Lop → [L,Set], I(n) 7→ homL(I(n),−), f 7→ f∗

But the representables homL(I(n),−) preserves finite products, so y factors through
ModL(Set). What kind of models of L are the representables?

7The notation is slightly misleading. Note that h is a map of classes, which doesn’t need to
be induced by an underlying C∞-homomorphism between the free C∞-rings. Therefore, h(a)(x)

has to be read as choosing an arbitrary representant of h(a), etc.
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Proposition 3.16. The representable models y(I(n)) = homL(I(n),−) of L in Set
are the free L-models on n generators.

Proof. Let M ∈ ModL(Set). The Yoneda Lemma yields Nat(y(I(n),−),M) ∼=
M(I(n)). Since M ◦ I preserves finite products, we have

Nat(y(I(n)),M) ∼= M(I(n)) = M(I(1))n

This reads that every morphism of L-models from y(I(n)) to any L-model M cor-
responds one-to-one to an n-tuple of elements of the undelying set M(I(1)) of M ,
and that the bijection is natural in M . In other words, y(I(n)) has the universal
property of the free L-model on n generators. �

The Yoneda embedding y induces an equivalence between Lop and the full subcat-
egory generated by the finitely generated free L-models in Set. This is the abstract
reason why the syntactic category L of a Lawvere theory L can be presented as the
opposite of the category of finitely generated free L-models in Set we have used in
all the examples except for C∞-rings.

The restriction UL of the evaluation-at-I(1) functor evI(1) : [L,Set] → Set to the
full subcategory ModL(Set) maps each L-model to its underlying set. We can
consider UL as the ”forgetful” functor from L-models to Set. Having identified the
free L-models on n-generators as the representables we have

Nat(y(I(n)),M) ∼= M(I(1))n = Set({1, . . . , n}, UL(M)) (3.7)

Is there a free L-model for any set X ∈ Set, i.e., does UL have a left adjoint FL?
Yes, for purely abstract reasons. Every set X ∈ Set is a filtered colimit8 of its finite
subsets. Equivalently, X is the filtered colimit of the canonical projection functor
PX : (ℵ0 ↓ X)→ Set restricted to its full subcategory J(X) of injective maps. Here
ℵ0 is considered as a full subcategory of Set.

The finitely generated free L-models functor we have already is

y ◦ Iop : ℵ0 → ModL(Set) ↪→ [L,Set]

This functor can be extended via the filtered-colimit construction to the whole
category Set: for a set X define

FL(X) := lim−→ J(X)
PX // ℵ0

y◦Iop // ModL(Set) .

This is well-defined, since [L,Set] is cocomplete, and it is an L-model, since filtered
colimits in Set commute with finite limits, in particular with finite products [Mac98,
theorem IX.2.1]. Indeed, as limits and colimits are computed pointwise in [L,Set]
filtered colimits of finite-product preserving functors are finite-product preserving.

Because of (3.7) the functor FL is left adjoint to UL

8A filtered colimit in a category C is a colimit of a functor J → C, where the category J is
filtered; i.e., every finite diagram in J has a cocone in J .
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Nat(FL(X),M) = Nat( lim−→
m:I(n)↪→X

y(I(n)),M)

= lim←−
m:I(n)↪→X

Nat(y(I(n)),M) ∼= lim←−
m:I(n)↪→X

Set({m(1), . . . ,m(n)}, UL(M))

= Set( lim−→
m:I(n)↪→X

m(I(n)), UL(M))

∼= Set(X,M)

The construction of FL in this way is one of the many extension-by-colimits (or
limits) examples I mentioned in the supervisions. However, there is also a more
concrete and hands on construction of FL(X) as the L-model with underlying set
all the formal L-terms build from elements of X up to equality9.

Indeed, the underlying set of an L-model M has to contain the image of every n-ary
operation M(q : I(n) → I(1)). Using this observation we can define FL(X)(I(1))
as an apropriate set of formal L-terms

FL(X)(I(1)) :=
∐
n∈N
{q(x1, . . . , xn) | q ∈ L(I(n), I(1)), x1, . . . , xn ∈ X}/ ∼

The equivalence relation ∼ identifies q(x1, . . . , xn) with r(x1, . . . , xi, . . . x̂j . . . , xn)
(the hat stands for omitting the argument), whenever xi = xj and the formal n-ary
operation q : I(n) → I(1) coincides with r ◦ (pr1, . . . ,pri, . . .pri . . . prn) where the
second pri is at the j-th position of the n-tuple, and r : I(n − 1) → I(1). The
realization FL(X)(q) of a formal n-ary operation q is the obvious map

(q1(x1
1, . . . , x

1
k1), . . . , qn(xn1 , . . . , x

n
kn)) 7→ q ◦ (q1, . . . , qn)(x1

1, . . . , x
1
k1 , . . . , x

n
kn)

It is straight forward (from the definition of ∼) that this makes (3.2) commute, and
FL(X) to a free L-model generated by X.

Remark 3.17. The underlying set of the free L-model on n generators y(I(n))
is the set of formal operations I(n) → I(1). This seems to be in disagreement
with FL({1, . . . , n}) constructed in the way above. However, using projections and
respective diagonal maps (”doubling an argument”) one can see that for every
formal expression r(n1, . . . , nk) for a k-ary operation r there is an n-ary operation
q s.t. q(1, . . . , n) is equivalent to r(n1, . . . , nk).

Remark 3.18 (Coend formula for FL(X(I(1)))). There is a conceptually more con-
venient representation of FL(X)(I(1)) as a coend (see [Mac98, section IX.6] for a
definition and elementary properties)

FL(X)(I(1)) =

∫ n∈ℵ0
L(I(n), I(1))×Xn (3.8)

9Compare this with the viewpoint on elements of free groups, free monoids and free T -algebras
of a monad T on Set as the formal operations of a theory.
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More precisely, FL(X)(I(1)) is the coend of the bifunctor

(y(I(1)) ◦ Iop(−))×X(−) : ℵ0 × ℵop0 → Set,

where X(−) denots the unique product preserving functor ℵop0 → Set (up to iso-
morphism) that maps 1 to X. This coend-representation is much more useful for
algebraic computations than the coproduct formula, due to the nice calculus of
coends.

Remark 3.19 (Completeness and cocompleteness of ModL(Set)). The category [L,Set]
is complete, cocomplete and the limits and colimits are computed pointwise. Since
finite limits commute with finite limits, finite limits of product preserving functors
in [L,Set] give finite-product preserving functors again. The category ModL(Set)
is therefore closed under small limits in [L,Set]. Besides completeness this tells us
that limits in ModL(Set) are computed pointwise. The same is true for filtered
colimits.

To see that ModL(Set) has all small colimits, because of the filtered colimits, we
only need to show the existence of finite coproducts [Mac98, theorem IX.1.1]. This
can be done by representing L-models as quotients of free L-models by equivalence
relations compatible with all the n-ary operations. However, this approach can
also be used to show that ModL(Set) is a reflective subcategory of [L,Set]: Given a
functor G : L→ Set, consider the free L-model FL(G(I(1))) and form the quotient
by the equivalence relation generated by the identifications induced by G(q) for any
n-ary operation q : I(n) → I(1), i.e., FL(q)(x1, . . . , xn) ∼ G(q)y for y ∈ G(I(n))
and xi := G(pri)y (see [Law63, theorem IV.1.1] and its proof for details.) Recall
that a reflective subcategory of a category, which is cocomplete, is itself cocomplete.

3.2. Syntax-Semantics duality. In the previous section we’ve seen that the ab-
stract reason behind the fact that a Lawvere theory can be recovered as the opposite
category of its finitely generated free Set-models is the Yoneda Lemma; but is there
a deeper conceptual reason? There is; we have a general syntax-semantics ad-
junction which generalizes the equivalence of a Lawvere theory with the opposite
category of its finitely generated Set-models. To be more precise we have a con-
travariant syntax-semantics adjunction between the category of Lawvere theories
and a certain category of categories over any category C with finite products. We
shall sketch the construction of this adjunction, but leave out the technical details,
which mainly have to deal with the size issues involved in this construction. (See
[Law63] for the details in the case C = Set.)

We have seen in remark 3.7 that for a fixed category C with finite products the
assignment L 7→ ModL(C) is functorial for morphisms of Lawvere theories. In fact,
every category of models ModL(C) admits a ’forgetful’ functor UL : ModL(C)→ C
by evaluating every model at I(1). In other words, we map an L-model in C to its
underlying object. Since morphisms F : L→ L′ of Lawvere theories commute with
the arity functors, the induced morphisms F ∗ : ModL′(C) → ModL(C) commute
with the ’forgetful’ functors.

Let C be a category with finite products. We denote by Sem(C) a category of
(certain) categories over C, i.e., objects are (certain) functors U : D → C and
morphisms F : U → U ′ are functors D → D′ s.t.
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D

U ��

F // D′

U ′~~
C

So we get a semantics functor

S : Lawop → Sem(C), C 7→ (UL : ModL(C)→ C), F 7→ F ∗

Does this functor have a left adjoint? We would need to extract a Lawvere theory
from any ’forgetful’ functor U : D → C. In the case of C = Set and if U has a left
adjoint F the natural candidate would be the opposite of the category of finitely
generated L-models. For an arbitrary category C with finite products and functor
U , however, U doesn’t need to have a left adjoint; and even if that is the case, there
doesn’t need to exist a functor ℵ0 → C like for C = Set, in general.

The key observation to overcome these problems is that for C = Set the n-ary
operations I(n) → I(1) of L correspond one-to-one to natural transformations
Un ⇒ U . Indeed, for C = Set Yoneda tells us that U : ModL(Set) → Set is
representable U ∼= NAT(y(I(1)),−) 10. Yoneda yields

NAT(Un, U) ∼= NAT(Nat(y(I(1)),−)n,Nat(y(I(1)),−))

∼= NAT(Nat(n ∗ y(I(1)),−),Nat(y(I(1)),−))

∼= Nat(y(I(1)), n ∗ y(I(1))),

where n ∗ X denotes the n-th copower of X, i.e., the n-fold coproduct of X with
itself. The functor y ◦ Iop = FL : ℵ0 → ModL(Set) preserves coproducts, since it
is (isomorphic to) a restriction of the left adjoint F : Set → ModL(Set) to the full
subcategory ℵ0, which is closed under coproducts. So n ∗ y(I(1)) ∼= y(n ∗ I(1)) =
y(I(n)). Applying Yoneda a second time gives

Nat(y(I(1)), n ∗ y(I(1))) ∼= Nat(y(I(1)), y(I(n))) ∼= homL(I(n), I(1)),

hence NAT(Un, U) ∼= homL(I(n), I(1)) as claimed. In fact the same type of argu-
ment proves NAT(Un, Um) ∼= homL(I(n), I(m)).

Remark 3.20. For a category C with finite products UL is the evaluation functor
evI(1), and UnL

∼= evI(n). Using that evaluation is a functor ev : L→ [ModL(C), C]
we still get a map homL(I(n), I(m)) → Nat(UnL , U

m
L ). However, on this level of

generality, we cannot tell if this is an isomorphism or not. (Counterexamples?)

For any U : D → C in Sem(C) we can define the Lawvere theory L(U) as the
full subcategory of [ModL(C), C] generated by the finite powers of U . (The arity
functor is the unique finite-product preserving one induced by 1 7→ U .) Every
morphism F : U → U ′ in Sem(C) is just an ordinary functor F : D → D′ s.t.

10Note that NAT(−,−) refers to the natural transformations in the functor category
[ModL(Set), Set]. Since ModL(Set) is a large category in the generic case, this is the main reason

why one needs to pay attention to size issues here.
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U ′F = U . Therefore precomposition with F yields a product preserving functor
L(U ′) → L(U ′) that commutes with the arity functors, and so a morphism of
Lawvere theories. We obtain a syntax functor

L : Sem(C)→ Lawop, U 7→ L(U), F 7→ F ∗

Theorem 3.21 (Syntax-Semantics adjunction). For any category C with finite
products the syntax functor is left adjoint to the semantics functor: L a S. The
unit η : ISem(C) ⇒ S L is for each U : D → C the morphism induced by evaluation
ev : D → [[D,C], C]

ηU : D → ModL(U)(C), d 7→ evd | L(U), f 7→ evf

The counit ε : LS ⇒ ILawop is for each Lawvere theory L the morphism with
underlying functor

εL : L→ L(UL), I(n) 7→ evI(n) = UnL , f 7→ evf .
11

Proof. We have UL(U) ◦ ηU = evI(1) ◦ηU = U , for I(1) = U ; so ηU is indeed a
morphism U → S L(U) in Sem(C). εL respects the arity functors of the Lawvere
theories by construction of the arity functor in L(UL). εL also preserves finite prod-
ucts, since the evaluation functor preserves finite products. (Note that ModL(U)(C)
has finite products, for C has them, and recall that they are computed pointwise.)
This shows εL a morphism of Lawvere theories. ε and η are easily seen to be natural
in L, respectively U .

For the adjunction we need to show the triangle equalities. The triangle identity
εL ·L η = 1L amounts to show that for each functor U : D → C in Sem(C) the
functor L ηUεL(U) is the identity morphism of the Lawvere theory L(U). As an
endomorphism of a Lawvere theory it has to be the identity on objects, for it has
to commute with the arity functor I : ℵop0 → L(U), which is a bijection on objects.
It suffices to show that it is an identity on all the n-ary operations of L(U); but
this is immediate from the action of η, ε and L on morphisms. Let θ : Un ⇒ U be
an n-ary operation, then

(L(ηU ) ◦ εL(U))(θ) = evθ ·ηU
and the d-component of this natural transformation computes to

(evθ ·ηU )d = evθ(evd) = evd(θ) = θd.

For the second triangle identity S ε · η S = 1S consider a Lawvere theory L, and
the functor

S(εL) ◦ ηUL
: ModL(C)→ ModL(C).

For an L-model M in C we get

11The equality should be strictly speaking a natural isomorphism evI(n)
∼= Un

L . The product
structure on C is the primary one, and all the others are induced by it; but forcing the isomorphism

to be an equality means to alter the product structure on C. Also, it seems more sensible to alter
the notion of morphism of Lawvere theories from strictly commuting with arities to commuting
with arities up to natural isomorphism.
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(S(εL)◦ηUL
)(M)(I(n)) = (evM ◦εL)(I(n)) = evM (evI(n)) = evI(n)(M) = M(I(n)).

The functor is thus an identity on objects; but because of the same double evaluation
construction it is also an identity on natural transformations θ : M ⇒M ′.

�

Corollary 3.22 (Syntax-Semantics duality). For C = Set the syntax-semantics
adjunction resticts to an equivalence between the category of Lawvere theories and
the full replete reflective subcategory of Sem(Set) spanned by the categories of models
of Lawvere theories in Set.

Proof. From theorem 1.5 we know that the adjunction L a S restricts to an equiv-
alence of full subcategories spanned by the objects for which the component of the
unit and counit are an isomorphism, respectively.

The counit ε is an isomorphism for C = Set. To see this note that the Yoneda lemma
implies that the evaluation functor ev : L→ [[L,Set],Set] is fully faithful, hence εL
is fully faithful. Since εL is always a bijection on objects, it is an isomorphism.

The monad S L is therefore idempotent (see e.g. ES 3, ex 1). In particular, ηUL
=

ηS L is an isomorphism. For any U in Sem(Set) isomorphic to some UL for a Lawvere
theory L the unit ηU is an isomorphism. So the full replete subcategory spanned by
the models of Lawvere theories in Set is the other part of the equivalence. Because
S L is idempotent, this subcategory is reflective (cf. ES 3, ex 6). �

3.3. Monads and Lawvere theories. The primary motivation to introduce Law-
vere theories in these notes was to make precise the intuition that monads ’are’
algebraic theories. How are monads and Lawvere theories related?

In contrast to monads the distinguished feature of Lawvere theories was the context-
independence, i.e, the separation of syntax and semantics. Monads, on the other
hand, are context-dependent, since the models corresponding to the theory given
by a monad T are its T -algebras, which are only defined on the category the monad
is defined on. To relate monads and Lawvere theories we have to fix a base category
C. The first obvious choice is C = Set, but other choices are possible and sensible
as well (locally finitely presentable categories, for example).

For a Lawvere theory L we have seen that the forgetful functor UL : ModL(Set)→
Set has a left adjoint FL. We can thus assign to any Lawvere theory L a monad
TL = ULFL on Set.

Theorem 3.23. Let L be a Lawvere theory. The forgetful functor UL : ModL(Set)→
Set is monadic.

Proof. We want to apply Beck’s theorem. UL has a left adjoint and reflects isomor-
phisms. We know that ModL(Set) is cocomplete (see remark 3.19). For monadicity
it is sufficient to show that UL preserves coequalizers of reflexive pairs. A coequal-
izer of a reflexive pair is a special type of a filtered colimit, which we know is
computed pointwise in ModL(Set). UL is the evaluation-at-I(1) functor. As such it
preserves all pointwise colimits in ModL(Set); in particular coequalizers of reflexive
pairs. �



NOTES ON ADJUNCTIONS, MONADS AND LAWVERE THEORIES 33

Since ModL(Set) has coequalizers of reflexive pairs, UL preserves them; since UL
also reflects ismorphims, it creates coequalizers of reflexive pairs. (In fact, UL
creates filtered colimits.) This result can be strengthened.

Proposition 3.24. UL creates coequalizers.

Proof. Let (α, β) be a pair of natural transformationsM ⇒ N in ModL(Set). Recall
that UL = evI(1). A coequalizer of the pair (αI(1), βI(1)) in Set can be obtained as
follows

M(I(1))
αI(1) //

βI(1)

// N(I(1))
π // N(I(1))/R

where R is the smallest equivalence relation on N(I(1)) containing the image of
αI(1) × βI(1) and π denotes the canonical quotient map.

We show that Q := N(I(1))/R lifts to an L-model and π to an L-homomorphism.
For any n-ary operation p : I(n)→ I(1) we have

M(I(n))
h×...×h//

M(p)

��

N(I(n))

N(p)

��
M(I(1))

h
// N(I(1))

for h = αI(1) and h = βI(1). The operations

N(p) : N(I(1))× . . .×N(I(1))→ N(I(1)

thus respect the relation αI(1) × βI(1)(M(I(1)) on N(I(1)), hence the equivalence
relation R generated by it, and so descend to maps

Q(p) : Q× . . .×Q→ Q

such that the subsequent diagram commutes

N(I(1))× . . .×N(I(1))

π×...×π
��

N(p) // N(I(1))

π

��
Q× . . .×Q

Q(p)
// Q

The maps Q(p) are unique with this property12. As a consequence Q lifts to a prod-
uct preserving functor Q : L→ Set and π lifts to an L-homomorphism (see the char-
acterisation of L-models in terms of its underlying objects and L-homomorphisms
in terms of the underlying arrows (3.2), (3.3)).

To verify the universal property of Q and π as the coequalizer of α and β in
ModL(Set) consider an L-homomorphism γ : N → N ′ with γα = γβ. The uni-
versal property of Q(I(1)) = N(I(1))/R in Set yields a unique map δ : Q(I(1))→

12The abstract reason for quotients commuting with products in Set is that every quotient

is the coequalizer of its kernel pair (i.e. the respective equivalence relation together with the
projection maps). Any reflexive relation is a reflexive pair in Set, and its coequalizer a filtered

colimit, which commutes with finite limits. R being the smallest equivalence relation generated

by the image of αI(1) × βI(1) means in the language of category theory that we take the kernel

pair of the coequalizer of the pair (αI(1), βI(1)) in Set.
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N ′(I(1)) s.t. δπI(1) = γI(1). Since γ and π are L-homomorphisms, δ lifts to an
L-homomorphism, too:

N ′(p)(δ × . . .× δ)πI(n) = N ′(p)((δπI(1))× . . .× (δπI(1)))

= N ′(p)(γI(1) × . . .× γI(1))

= N ′(p)γI(n)

= γI(1)N(p)

= δπI(1)N(p)

= δQ(p)πI(n),

hence N ′(p)(δ × . . .× δ) = δQ(p) since πI(n) is epi.

�

The theorem says that the monad TL assigned to a Lawvere theory L has an
equivalent category of models, that is, the semantics of TL and L is the same up
to equivalence.

Remark 3.25. From the proof of the proposition it follows easily that UL creates
coequalizers of UL-split pairs in the sense of [Mac98], i.e., that for any pair of
L-homomorphisms α, β that has a split coequalizer π there is one and only one
coequalizing arrow γ s.t. UL(γ) = π and this γ is moreover a coequalizer13. The

comparison functor K : ModL(Set) → SetTL is therefore not only an equivalence,
but an isomorphism by [Mac98, theorem VI.7.1].

What about the functoriality of the assignment L 7→ TL? To study this question
we have to define first what a morphism between monads is supposed to be. Recall
that monads can be considered as internal monoids in the strict monoidal category
(End(C), ◦, IC). A natural choice of morphism θ : T → T ′ is an internal monoid
homomorphism. If we spell this out that amounts to a natural transformation
θ : T ⇒ T ′ s.t. the subsequent diagrams are rendered commutative

T 2

µ

��

θ2 +3 T ′2

µ′

��
T

θ
+3 T ′

T
θ +3 T ′

IC

η

\d

η′

:B

As regards the categories of Eilenberg-Moore algebras every such morphism induces
a functor θ∗

CT
′

UT ′ !!

θ∗ // CT

UT
~~

C

13Note that in contrast to the definition given in the lectures this definition of ”creates co-
equalizers of ... ” is not stable under equivalence of categories, and thus not a very sensible notion

of creation of coequalizers.
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and a natural transformation τθ : FT ⇒ θ∗ ◦ FT ′ . (See [Mac98, exercise VI.2.3].)
We obtain a (meta)category Mnd(C) of monads on C 14.

Let F : L → L′ be a morphism of Lawvere theories. Recall that on ℵ0 ↪→ Set the
free model functor FL is just y ◦ Iop and hence TL(n) = ULFL(n) = L(I(n), I(1)).
For each n ∈ obℵ0 the arrow-component of the functor F yields a map

(MF )n := FI(n),I(1) : L(I(n), I(1))→ L′(I ′(n), I ′(1))

and hence maps (MF )n : TL(n)→ TL′(n), natural in n. We use again that every
set X is a canonical filtered colimit of objects in ℵ0 to extend MF to a natural
transformationMF : TL ⇒ TL′ . MF is well-defined because FL, UL and hence TL
(and TL′) preserve filtered colimits. This construction is easily seen to be functorial.

Remark 3.26 (Using coends). Recall the representation (3.8) of FL(X)(I(1)) =
TL(X) as the coend

TL(X) =

∫ n∈ℵ0
L(I(n), I(1))×Xn

For every X The arrow-component of F yields a natural transformation of the
bifunctors

τF : L(I(−), I(1))×X(−) ⇒ L′(I ′(−), I ′(1))×X(−)

and hence a map
∫ n∈ℵ0 τF (n, n) =

∫ n∈ℵ0 FI(n),I(1)×1Xn , which is obviously natural
in X. This yields another way to obtain MF

(MF )X =

∫ n∈ℵ0
FI(n),I(1) × 1Xn

It remains to check that this is a morphism of monads. Since TL and ISet preserve
filtered colimits it is sufficient to check the commutativity of the respective diagrams
for MF for n ∈ obℵ0. Let ηL denote the unit and µL the multiplication of the
monad TL = ULFL. The map

(ηL)n : {1, . . . n} → L(I(n), I(1))

sends k to the projection on the k-th component prk : I(n) → I(1). F is a finite
product preserving functor, as such maps projections to projections, and hence
(MF )n(ηL)n = (ηL′)n. Alternatively, one can see (MF )X(ηL)X = (ηL′)X from
the coend representation ofMF directly by using that the unit (ηL)X is the com-
posite

X
x 7→(1I(1),x)

// L(I(1), I(1))×X
ωX

1 //
∫ n∈ℵ0 L(I(n), I(1))×Xn

14Note that Mnd(C) doesn’t have to have small hom-sets, or, if not assuming the Universe
Axiom, doesn’t need to have a model in (NBG) set theory. One particular example is Mnd(Set).

We shall, however, ignore this size problem here and always speak of the category of monads.
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where ωX is the universal wedge of the coend. (See [Mac98, proposition IX.7.1].)
The multiplication (µL)n can be represented as follows. The composition in L
induces a wedge

κn : L(I(−), I(1))× L(I(n), I(1))(−) → L(I(n), I(1))

with

κnk : L(I(k), I(1))×L(I(n), I(1))k → L(I(n), I(1)), (f, g1, . . . , gk) 7→ f◦(g1, . . . , gk)

By the universal property of ωL(I(n),I(1)) there is a unique map

(µL)n : TL(L(I(n), I(1))→ L(I(n), I(1))

s.t. (µL)nω
L(I(n),I(1)) = κn. Because of the uniqueness (µL)n is natural in n.

The equation (MF )n(µL)n = (µL′)n(MF )2
n is essentially a consequence of F

commuting with composition. We can construct a wedge

τn : L(I(−), I(1))× L(I(n), I(1))(−) → L′(I ′(n), I ′(1)) = T ′n

as FI(n),I(1)κ
n and obtain a unique map h : T 2n → T ′n, s.t. hωL(I(n),I(1)) = τn.

This h is FI(n),I(1)(µL)n = (MF )n(µL)n. On the other hand, since F commutes
with composition, we have also

(τn)k = (κ′)nk ◦ (FI(k),I(1) × (FI(n),I(1))
k),

where (κ′)n denotes the respective wedge for (µL′)n

(κ′)n : L′(I ′(−), I ′(1))× L′(I ′(n), I ′(1))(−) → L′(I ′(n), I ′(1))

By passing to the coends we get h = (µ′L)n(MF )2
n, since

(MF )2
n = (MF )TL(n) ◦ TL((MF )n)

=

∫ k∈ℵ0
FI(k),I(1) × 1L′(I′(n),I′(1))k ◦

∫ k∈ℵ0
1L(I(k),I(1)) × (FI(n),I(1))

k

=

∫ k∈ℵ0
FI(k),I(1) × (FI(n),I(1))

k

The assignment L 7→ TL thus lifts to a functor

M : Law→ Mnd(Set), L 7→ TL, F 7→ MF.

Theorem 3.27. The functor M is fully faithful.
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Proof. Let L,L′ be two Lawvere theories. Let θ : TL ⇒ TL′ be a morphism of
monads. We use the components θn : L(I(n), I(1)) → L′(I ′(n), I ′(1)) to define
maps

F θI(n),I(m) : L(I(n), I(m)) ∼= L(I(n), I(1))m → L′(I ′(n), I ′(1))m ∼= L′(I ′(n), I ′(m)),

(q1, . . . , qm) 7→ (θn(q1), . . . , θn(qm))

Because of θµL = µL′θ
2 (and the construction of µL and µL′ from the wedges κn

respectively (κ′)n) the maps F θI(n),I(m) commute with the composition in L and L′.

Because of θηL = ηL′ the maps F θI(n),I(1) map projections prk : I(n) → I(1) to

projections prk : I ′(n)→ I ′(1). With this every F θI(n),I(n) preserves identities, and

together with the object map

F θo : obL→ obL′, I(n) 7→ I ′(n)

defines a finite-product preserving functor F θ : L → L′ with FI = I ′, hence a
morphism of Lawvere theories. It is obvious from the construction that the map
θ 7→ F θ is a two-sided inverse to the arrow map ML,L′ . This shows M to be fully
faithful as asserted.

�

Using the syntax-semantics adjunctions of the previous section we get a functor
Mnd(Set) → Law. Recall that every morphism of monads θ : T → T ′ induces a
functor ”by precomposition”

θ∗ : SetT
′
→ SetT , (X,h) 7→ (X,hθX), f 7→ f

Because of UT θ∗ = UT
′

we get a contravariant functor

Mnd(Set)→ Sem(Set)op, T 7→ UT , θ 7→ θ∗

If we compose this functor with Lop : Sem(Set)op → Law, we obtain a functor,
which we denote by L, too

L : Mnd(Set)→ Law, T 7→ L(UT ), θ 7→ (θ∗)∗

Theorem 3.28. L is right adjoint to M: M a L.

Proof. A natural bijection

homMnd(Set)(M(L), T ) ∼= homLaw(L,L(T ))

can be obtained by generalizing the construction of θ 7→ F θ in the proof thatM is
fully faithful.

(i) To begin with note that UT ∼= homT (FT (1),−) is representable, and hence

homL(T )(IT (n), IT (m)) = Nat((UT )n, (UT )m) ∼= (UTFT (n))m = (Tn)m
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by Yoneda and the adjunction FT a UT , where IT is the arity functor of L(T ).
In fact, these bijections can be seen as the arrow maps of an equivalence of
the full subcategory (ℵ0)opT of SetT generated by ℵ0, and L(T )

(ℵ0)opT → L(T ), nT 7→ (UT )n, (fT : mT → nT ) 7→ (µnTf ηm)∗,

since the underlying map of fT : mT → nT is the map m → Tn, i.e., an
element of (Tn)m.

(ii) Let θ : TL ⇒ T be a morphism of monads. We use the components θn :
L(I(n), I(1))→ Tn to define maps

F θI(n),I(m) : L(I(n), I(m)) ∼= L(I(n), I(1))m → (Tn)m ∼= homL(T )(IT (n), IT (m)),

(q1, . . . , qm) 7→ (θn(q1), . . . , θn(qm))

As a morphism of monads θ we have µθ2 = θµL and θηL = η. Bearing the
equivalence in mind mentioned above (as well as the the construction of µL
and ηL ) F θI(n),I(m) can be seen to commute with composition and to preserve

projections and identities. As in the proof that M is fully faithful we get a
morphism of Lawvere theories F θ : L→ L(T ).

(iii) Conversely, generalizing the construction of MF we can construct to any
morphism F : L→ L(T ) of Lawvere theories a morhism of monads θF : TL ⇒
T . Indeed, for any set X, F determines a wedge

σX : L(I(−), I(1))×X(−) → TX

with components

(σX)n : L(I(n), I(1))×Xn → TX, (q, (x1, . . . , xn)) 7→ (Fq)(TX,µX)(ηX(x1), . . . , ηX(xn))

There is a unique map θFX : TLX → TX s.t. θFXω
X = σX . Uniqueness

shows θFX natural in X.
Recall the representation of (ηL)X = ωX1 ◦ (x 7→ 1I(1), 1X), where ωX is

the universal wedge of TLX. Evaluating σX1 on (1I(1), x) yields ηX(x), and so

θF ηL = η.
To show θFµL = µ(θF )2 we show θFn (µL)n = µn(θF )2

n for n ∈ obℵ0 first.
Note that

θFn : L(I(n), I(1))→ Tn, f 7→ (Ff)(Tn,µn)(ηn(1), . . . , ηn(n))

(This follows from ωnk (f, (n1, . . . , nk)) = f ◦ (prn1
, . . . ,prnk

) with prni
:

I(n)→ I(1), θFn ω
n = σn and that F preserves finite products.) We construct

a wedge

τn : L(I(−), I(1))× L(I(n), I(1))(−) → Tn

as θFn κ
n and obtain a unique map h : T 2

Ln → Tn, s.t. hωL(I(n),I(1)) = τn.
This h is θFn (µL)n. On the other hand we can construct the same wedge τn

as

τnk = µn ◦ σnk ◦ (1L(I(k),I(1)) × (θFn )k).
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Indeed, let us denote the so constructed wedge by ρn, then

ρnk (f, (g1, . . . , gk)) = µn ◦ Ff(T 2n,µTn)

◦ (ηTn)k ◦ ((Fg1)(Tn,µn), . . . , (Fgk)(Tn,µn))(ηn(1), . . . , ηn(n));

but µn : T 2n → Tn is a a morphism (T 2n, µTn) → (Tn, µn) by the asso-
ciativity law for µ and Ff is a natural transformation (UT )k ⇒ UT , so

µn ◦ Ff(T 2n,µTn) = Ff(Tn,µn) ◦ (µn)k

Because of µnηTn = 1Tn and since F is product preserving this yields

ρnk (f, (g1, . . . , gk)) = F (f ◦ (g1, . . . , gk))(Tn,µn)(ηn(1), . . . , ηn(n))

= τnk (f, (g1, . . . , gk))

as asserted. If we pass to the factorization though the universal wedge ωn for
ρn, we obtain

h = µnθ
F
TnTLθ

F
n = µn(θF )2

n.

We conclude θFn (µL)n = µn(θF )2
n. To show that this holds for an arbitrary

(small) set X we employ a colimit argument. Let ι : n ↪→ X denote an
inclusion of n as a finite subset of X. Consider the diagram

T 2
LX

(µL)X

��

(θF )2X // T 2X

µX

��

T 2
Ln

T 2
Lι

bb

(µL)n

��

(θF )2n // T 2n

T 2ι

<<

µn

��
TLn

TLι{{

θFn

// Tn

Tι ##
TLX

θFX

// TX

We have shown that the inner square commutes. The trapezia commute be-
cause of the naturality of µ, µL and θF . To show the outer square commutative
we pass to the filtered colimit over the category J(X) of all the inclusions ι
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for every n ∈ obℵ0

T 2
LX

(µL)X

��

(θF )2X // T 2X

µX

��

lim−→ι∈J(X)
T 2
Ln

∼=
ee

lim−→J(X)
(µL)n

��

lim−→J(X)
(θF )2n
// lim−→ι∈J(X)

T 2n

99

lim−→J(X)
µn

��
lim−→ι∈J(X)

TLn

∼=xx

lim−→J(X)
θFn

// lim−→ι∈J(X)
Tn

&&
TLX

θFX

// TX

The diagonal maps are the universal ones coming from the colimit. The iso-
morphisms are due to TL preserving filtered colimits (andX = lim−→ι∈J(X)

dom ι).

The inner square and the trapezia comutes because it does for every ι. Hence
the outer square commutes.

(iv) It is straight forward to see that the mappings F 7→ θF and θ 7→ F θ are inverse
to each other. Showing the naturality in T and L I leave as an exercise.

�

Remark 3.29 (Equivalent definition of L). Using the syntax-semantics correspon-
dence for Lawvere theories, namely that a Lawvere theory L is (isomorphic to) the
opposite of the category of finitely generated free L-models by Yoneda, one could
define L(T ) as the opposite of the full subcategory of SetT generated by the finitely
generated free T -algebras FT (n), n ∈ obℵ0 with the obvious arity functor. Since
FT might not be one-to-one on objects (see e.g. [Mac98, exercise VI.5.3]) we have
to use the equivalent full subcategory (ℵ0)T ↪→ SetT .

The functoriality of this construction is a consequence of the functoriality of the
Kleisli construction. More explicitly, let θ : T ⇒ T ′ be a morphism of monads.
Identifying the Kleisli categories with their equivalent full subcategories of SetT

generated by free T -algebras the induced functor θ∗ is

θ∗ : SetT → SetT ′ , XT 7→ XT ′ , fT 7→ (θcod ff)T ′ .

It is clear from the definition that θ∗FT (n) = FT ′ . Moreover θ∗ preserves coprod-
ucts, so θop∗ restricted to L(T ) yields a morphism of Lawvere theories L(T )→ L(T ′).

Remark 3.30 (Finite-product categories C). Why didn’t we define L using the
Kleisli category to begin with? Because the given definition of L generalizes to any
finite-product category C. For any such C we can assign a Lawvere theory to any
monad over C in a functorial way

L : Mnd(C)→ Law, T 7→ L(UT ), θ 7→ (θ∗)∗

The construction of M does not generalize so obviously. For locally finitely pre-
sentable categories, however, one can show the forgetful functor UL to have a left



NOTES ON ADJUNCTIONS, MONADS AND LAWVERE THEORIES 41

adjoint FL, and hence assign a monad TL = ULFL to any Lawvere theory L. I
haven’t checked the functoriality of this assignment in this case though.

Corollary 3.31. The adjunction restricts to an equivalence of the category of Law-
vere theories Law and the full (replete) reflective subcategory of Mnd(Set) of monads
that preserve filtered colimits.

Proof. As any adjunction also M a L restricts to an equivalence. We know that
M is fully faithful already, so the unit of this adjunction is an isomorphism (dual
of [Mac98, theorem IV.3.1]) and the induced monad on Mnd(Set) is idempotent.
M is thus equivalent to a replete full subcategory of Mnd(Set). We have seen that
each M(L) = TL preserves filtered colimits. Since this is a property stable under
isomorphism of monads we conclude the claim (see also the proof of theorem 3.22).

�

Example 3.32 (A monad that does not preserve filtered colimits). The forgetful
functor from the category CHaus of compact Hausdorff spaces to Set has a left ad-
joint that assigns to any set X the Stone-Čech compactification βX of X equipped
with the discrete topology. The induced monad T of this adjunction maps finite
sets to finite sets (since a discrete topological space is compact iff its underlying
set is finite). On the full subcategory category of finite sets the monad T is thus
isomorphic to the identity monad. If T were to preserve filterd colimits, then, since
every set X is the filtered colimit of its finite subsets, we would have T ∼= ISet as
monads. But cardTN = 2cardR > cardN, so there is no bijection from TN to N.

Remark 3.33 (Monads and infinitary Lawvere theories). As mentioned in the in-
troduction the equivalence of the category of Lawvere theories and the category of
filtered colimits-preserving monads has a generalization to all monads on Set. The
notion of Lawvere theory has to be generalized to that of infinitary Lawvere the-
ory, however. Infinitary Lawvere theories allow operations with arity of arbitrary
cardinality, not just a finite one. One example is the theory of sup-lattices. Here
the formation of suprema supX for any subset X of the lattice are considered as
operation of arity cardX.

Instead of using a skeleton of Set it is more practice-oriented to use the category
Set as the domain of the arity functor instead of a skeleton for the definition of an
infinitary Lawvere theory. An infinitary Lawvere theory is a category L (with small
hom-sets) and small products together with a (small-)product preserving functor
I : Setop → L that is essentially surjective, i.e., every object of L is isomorphic to
some I(X). Models of L in a category C with small products are (small-)product-
preserving functors M : L→ C.

One can show that the forgetful functor ModL(Set)→ Set of an infinitary Lawvere
theory L is monadic; in particular, to any infinitary Lawvere theory L we can
associate a monad TL. Conversely, to any monad T on Set we can associate the
infinitary Lawvere theory SetopT with arity functor F opT : Setop → SetopT . The monad
associated with SetopT is isomorphic to T and the Lawvere theory associated to TL
is equivalent to L.

Returning to the finitary case we have seen for a Lawvere theory L that, since UL
is monadic, the categories of models of L and that of TL-algebras are isomorphic.
For a monad T on Set and its corresponding Lawvere theory L(T ) an equivalence
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between the categories of models cannot exist, in general. The relationship is as
follows.

Proposition 3.34. We identify L(T ) with the opposite of th full subcategory (ℵ0)T
of SetT of finitely generated free T -algebras as in remark 3.29. There is a tensor-
hom-adjunction

ModL(T )(Set)
(−)⊗ι

// SetT
homT (ι,−)oo

,

where ι : (ℵ0)T → SetT is the restriction of the comparison functor KT : SetT →
SetT . More explicitly

homT (ι, (X,h)) : L(T )→ Set, nT 7→ homT (ι(nT ), (X,h)), fT 7→ ι(fT )∗,

M ⊗ ι =

∫ n∈ℵ0
M(I(n)) ∗ ι(nT ) =

∫ n∈ℵ0
(T (M(I(n))× n), µM(I(n))×n).

T is a monad that preserves filtered colimits iff this adjunction is an adjoint equiv-
alence.

Proof. (Sketch) As SetT is cocomplete, M ⊗ ι is well-defined. To check that the
given functors are adjoint is a good exercise in the end/coend calculus and is left
to the reader.

We study the compostion of the tensor-hom adjunction with FL(T ) a UL(T ). There
is a natural isomorphism y(nT ) ⊗ ι ∼= ι(nT ). Recall that the arity functor of the
Lawvere theory (ℵ0)opT is F opT , so y ◦ FT is the free L(T )-model functor restricted
to ℵ0 ↪→ Set; but ι ◦ FT = FT |ℵ0, hence

(−)⊗ ι ◦ FL(T )
∼= FT ,

since every set is a filtered colimit of its finite subsets, and all of the above functors
preserve colimits.

UL(T ) ◦ homT (ι,−) ∼= UT

is a consequence of ι(1T ) = FT (1), UT ∼= homT (FT (1),−) and UL(T ) = ev1T
. We

get a morphism of monads

TL(T )

UL(T )η
htFL(T ) +3 UL(T ) ◦ homT (ι,−) ◦ (−)⊗ ι ◦ FL(T )

∼= T.

If the tensor-hom-adjunction is an equivalence, (−)⊗ ι is fully faithful, the unit ηht

of the tensor-hom-adjunction is thus an isomorphism, and we have TL(T )
∼= T . So

T preserves filtered colimits, since TL(T ) does.

Suppose T preserves filtered colimits. Because of y(nT ) ⊗ ι ∼= ι(nT ) we have that
ηhty(nT ) is an isomorphism, hence TL(T )(n) ∼= T (n), and finally TL(T )(X) ∼= T (X) for

any set X due to the preservation of filtered colimits, i.e., TL(T )
∼= T as monads.

Furthermore, we have
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UT ◦ y(nT )⊗ ι = Tn ∼= homT (1T , nT ) = UL(T )(y(nT ))

Every L(T )-model is a filtered colimit of representables in ModL(T )(Set). Tensoring

(−) ⊗ ι preserves colimits and since T preserves filtered colimits, so does UT . We
get

UT ◦ (−)⊗ ι ∼= UL(T )

This shows (−) ⊗ ι to be isomorphic to the comparison functor. However, due to

TL(T )
∼= T and UL(T ) being monadic, the comparison functor from ModL(T ) → SetT

is an equivalence. This shows the tensor-hom adjunction to be an equivalence. �

Remark 3.35 (Monads as algebraic theories). If we consider the notion of (infinitary)
algebraic theory to coincide with that of an (infinitary) Lawvere theory we can make
the following observations concerning the relationship to monads.

(1) If we consider models and monads in Set only then monads and infinitary alge-
braic theories are equivalent notions, as well as are filtered-colimit-preserving
monads and (finitary) algebraic theories.

(2) Algebraic theories can have models in any category C with finite products,
and it may happen that an algebraic theory L has a non-trivial category of
C-models, but that the forgetful functor UL has not a left adjoint (example?)15

(3) To any monad T on a category with finite products we can associate a Lawvere
theory L(T ). However, the category ModL(T )(C) doesn’t need to be equivalent

to CT (example?)16 On the other hand, there are monads over categories that
don’t have finite products.

This shows that monads and algebraic theories are apriori different notions. They
can be related to each other whenever there is a common domain of definition,
namely categories with finite products. (However, note that for any category C

there is a finite-product-completion Ĉ with a fully faithful embedding C ↪→ Ĉ; any
monad on C lifts to a monad on Ĉ.) For some categories like C = Set both notions
become equivalent.

Of course, even in situations where both notions are not equivalent it might still be
helpful to think of a monad as an algebraic theory.

3.4. From finite product categories to monoidal categories: PROPs and
operads. In the supervisions I explained that monoid signatures have models in
any monoidal category. Important examples are rings as internal monoids in the
monoidal category (Ab,⊗Z,Z) of abelian groups and R-algebras over a commutative
ring R, which are internal monoids in the monoidal category (ModR,⊗R, R) of
R-modules. On one hand this gives a nice unified conceptual viewpoint, on the

15For Set one can construct such an example in the framework of ZFC+Universe, if one allows
Lawvere theories to be large categories that don’t have small hom-sets. In that case one can

define a Lawvere theory of (small)-complete Boolean algebras. This theory has non-trivial models
in Set, but there are no free complete Boolean algebras in Set, hence there is no monad over Set

corresponding to this algebraic theory. However, this example is a rather forced one.
16A forced example is the compact Hausdorff space monad on Set; which is simply due to the

fact that it doesn’t preserve filtered colimits.
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other hand it paves the way to a more unified treatment of algebraic theories and
generalizations thereof.

Another important example we have encountered in the supervisions briefly was the
relationship between groups and Hopf algebras. Asking about the correct notion of
internal group in a symmetric monoidal category and by analyzing the necessary
structure to define an internal group in a category with finite products we arrived
at the notion of Hopf algebra. This relates the theory of groups and Hopf-algebras:
an internal group in a category C with finite products is a Hopf algebra in the
symmetric monoidal category (C,×, 1), where × denotes the cartesian product
bifunctor and 1 the terminal object. To be able to capture this observation on a
syntactic level we need to generalize Lawvere theories to the symmetric monoidal
setting.

The key observation is that ℵop0 is the category with finite products freely generated
by one object, and that the syntactic category of a Lawvere theory L is the category
with finite products freely generated by the generic model I(1) of L (corresponding
to the identity functor on L). Passing from cartesian products to a symmetric
monoidal structure we replace ℵop0 by the symmetric monoidal category P freely
generated by one object (the permutations category). The objects of P are the
natural numbers. There are only morphisms n → n, namely the permutations of
the set {1, . . . , n}. One can consider P as a subcategory of ℵ0

17. The symmetric
monoidal structure comes from the coproduct of ℵ0.

Definition 3.36. A PROP (”PROduct and Permutation category”) is a sym-
metric monoidal category P together with a (strong) symmetric monoidal functor
I : P→ P , the arity functor. Morphisms of PROPs are symmetric monoidal func-
tors commuting with the arity functors, and given a symmetric monoidal category S
a model of P in S is a symmetric monoidal functor P → S. P -homomorphisms are
symmetric monoidal natural transformations between these functors. We obtain a
category ModP (S).

With the notion of PROP we can consider the PROP PH of Hopf-algebras. Note
that this doesn’t coincide with the Lawvere theory LG of groups considered as a
symmetric monoidal category. However, LG is the PROP of cocommutative Hopf al-
gebras18. There is a morphism of PROPs PH → LG and every symmetric monoidal
functor PH → C for a category C with finite products factors through this mor-
phism, since every Hopf algebra in such a category C is necessarily cocommutative.
Every Lawvere theory gives rise to a PROP.

A Lawvere theory L is determined by all the n-ary operations I(n) → I(1). This
is not true for a PROP, in general. Due to the absence of projections and the
universal property of products we can have operations I(n) → I(m) that are not
tensor products of operations I(n) → I(1). One example is the comultiplication
∆ : I(1)→ I(2) in PH .

17Generalizing from a cartesian product to a symmetric monoidal structure abstracts from the
cartesian structure as a multiplication with unit and associativity up to natural isomorphism, and
hence forgets about the projections and their universal property. Discarding the projections and

all the composites involving them amounts to pass from ℵop0 to the subcategory Pop ∼= P.
18I haven’t checked this!
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Generalizing the data of n-ary operations and how they compose to the monoidal
setting one arrives at the notion of a (symmetric) operad and the algebra of an
operad. Every symmetric operad gives rise to PROP, but not every PROP is induced
by an operad. Operads and PROPs arose as means of understanding the various
algebraic structures encountered in Algebraic Topology. Operads and their algerbas
in particular, have proven a very important algebraic notion in various fields of
mathematics besides Algebraic Topology. (See, e.g., [MSS])
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[Lav96] René Lavendhomme, Basic concepts of sythetic differential geometry, Kluwer Academic
Publishers, Dordrecht, 1996.

[Law63] F. William Lawvere, Functorial semantics of algebraic theories, Ph.D. thesis, Columbia

University, 1963, Republished in ’Reprints in Theory and Applications of Categories’,
No. 5 (2004) pp 1-121.

[LS02] Stephen Lack and Ross Street, The formal theory of monads, Journal of Pure and Applied
Algebra 175 (2002), 243–265.

[Mac98] Saunders Mac Lane, Categories for the working mathematician, 2 ed., Graduate Texts

in Mathematics, vol. 5, Springer-Verlag, New York, 1998.
[MM92] Saunders Mac Lane and Ieke Moerdijk, Sheaves in geometry and logic, Springer-Verlag,

New York, 1992.

[MR91] Ieke Moerdijk and Gonzalo E. Reyes, Models for smooth infinitesimal analysis, Springer-
Verlag, New York, 1991.

[MSS] Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics,

Mathematical Surveys and Monographs, vol. 96, American Mathematical Society.
[Str72] Ross Street, The formal theory of monads, Journal of Pure and Applied Algebra 2 (1972),

149–168.
[Str76] Ross H. Street, Limits indexed by category-valued 2-functors, Journal of Pure and Applied

Algebra 8 (1976), 149–181.

DPMMS, Centre for Mathematical Sciences, Cambridge CB3 0WB

E-mail address: fb383@cam.ac.uk


	1. Adjunctions
	1.1. Universal constructions and adjunctions
	1.2. Adjunctions and limits
	1.3. Adjunctions, equivalences and dualities
	1.4. 2-Categorical perspective

	2. Monads
	2.1. T-algebras
	2.2. Properties of CT
	2.3. Universal splittings of monads
	2.4. Beck's monadicity theorem
	2.5. 2-Categorical perspective: formal theory of monads

	3. Lawvere theories
	3.1. Free Set-models of a Lawvere theory
	3.2. Syntax-Semantics duality
	3.3. Monads and Lawvere theories
	3.4. From finite product categories to monoidal categories: PROPs and operads

	References

